Before we begin, are there any questions from last day's work?

1060

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) analyse a table of values to decide if it represents a relation which is: linear, quadratic, exponential, or "unknown"

MBF 3CI

Graph-fest! May 15/17

INVESTIGATION:

1. Create a table of values for the following three relations. Complete the first differences (FD), second differences (SD) and y-ratio columns too. (The first few rows are done for you.)

y = 2x $y=2()$				
x	y	FD	SD	y- ratio
0	0			
1	2	2		undefined
2	4 •	2	0	2
3	6 -	2	0	1.5
4.	8	8-6=2	0	$\frac{8}{6}$ =1.33 $\frac{10}{8}$ =1.25
5	10	10-8=2	0	$\frac{10}{8}$ =1.25
6	12	12-10=2	0	1.2
7	14	2	0	1.17
8	16	2	0	1.14

$y = 2x^2$ $y = 2()^2$				
x	y	FD	SD	y- ratio
0	0			Tatio
1	2	2		undefined
2	8	6	4	4
3	18-	10 -	4	2.25
4	32	32-18=14	4	$\frac{32}{18}$ = 1.78
5	50	50-32=18	4	$\frac{50}{32}$ = 1.56
6	72	22	4	\$1.44
7	98	26	4	1.36
8	128	30	4	1.31

$y = 2^x$						
	$y = 2^x$ $y = 2^{(1)}$					
x	y	FD	SD	y -		
				ratio		
0	1				2	
1	2	1		2 <	27	
2	4	2	1	2	냌	
3	8	4	2	2	-	
4	16	8	4	$\frac{16}{8}$ =2		
5	32	16	8	$\frac{32}{16}$ =2		
6	64	32	16	$\frac{64}{32}$ =2		
7	128		32	$\frac{128}{64}$ =2		
8	256	128	64	²⁵⁶ ₁₂₈ =2		

- 2. Classify each relation above as either quadratic, linear, exponential, or "unknown". Explain. ♣ linear
- # first differences are constant
- quadratic

exponential

- second differences are constant
- y-ratios are constant
- 3. Determine the y-coordinates for each relation when x = 0.5 and when x = 1.5 too! Include these below:

$$y = 2x$$

$$y = 2x^2$$

$$y = 2^x$$

\boldsymbol{x}	y
0.5	1
1.5	3 🚽

x	y
0.5	0.5
1.5	4.5

\boldsymbol{x}	y
0.5	1.41
1.5	2.82

4. On the grid below, graph all three relations using the table of values from Question 1 and Question 3!

Label them too. Use pencil only.

Use the scales: 1 block = 1 unit x-axis: 1 block = 16 units y-axis:

CONCLUSIONS:

1. Which relation represents the slowest growth? Why? Which represents the fastest growth? Why?

EXAMPLE

A vase that cost \$800 today is expected to increase in value by 7% each year for 5 years. Without graphing, is the growth linear, quadratic, exponential, or "unknown"? Explain.

$$y - ratios$$

 $856 = 1.07$
 $915.92 = 1.07$
 $856 = 1.07$

the y ratios are <u>constant</u> the value of the vase is increasing **exponentially**

This homework is also on the bottom of the back of the handout.

Entertainment: Relations

NO GRAPHING IS REQUIRED.

- 1. Do: p. 377 # 2
- 2. For each relationship, without graphing, is it linear, quadratic, exponential, or "unknown"? Hint: for help use the **EXAMPLE** above.
 - a) James stacks cans for a grocery store display. The top row has 1 can, the second row has 2 cans, the third row has 3 cans, etc.....
 - b) A soccer ball is kicked. At 1 sec., its height is 20.6m. At 2 sec., its height is 30.4 m. At 3 sec., its height is again at 30.4m. At 4 sec., the height is 20.6m. At 5 sec., the height is 1m etc......
 - c) A \$600 investment is worth \$618 after 1 year, \$636 after 2 years, \$654 after 3 years, \$672 after 4 years, etc.....