6.7 Solving Problems Using Sinusoidal Models (Spring 2017)-s1

May 24, 2	20	17
-----------	----	----

		•	→	~ 1	/ \	
' L'O	OXI	'a -	Anreamo	$(+\infty)$	(a)	•
	lav		Learning	Ouai		
		_			(~)	

By the end of the class, I will be able to:

a) solve problems related to real-world applications of sinusoidal functions.

Last day's work: pp. 391-393 #1 - 6, 9, 12 [13,14]

Solving Problems Using Sinusoidal Models

Date: May 24/17

Tim has a model train that goes around a circular train track, and Tim is standing directly south of the track. The graph below shows the train's distance north of Tim as a function of time.

$$y = \frac{\text{max+min}}{2}$$

$$= \frac{4.5 + 0.5}{2}$$

$$= \frac{5}{2}$$

$$= 3.5$$

- a) What is the equation of the axis of the function?
- b) What is the amplitude of the function, and what does it represent in this situation??
- c) What is the period of the function, and what does it represent in this situation??
- d) What is the range of the function?

- a = 2; the radius of the track
 - 30 s; time for 1 lap around the track
- e) Determine the equation of the sinusoidal function.

{y
$$\mathbf{R}/0.5 \le y \le 4.5$$
}
n. $y = -2\cos(12x) + 2.5$

f) What is the train's distance north of Tim at t = 52 s?

Sub t = 52 s in equation above, then y = 2.709 m

Ex. 2

A Ferris wheel with radius 20 metres rotates once every 40 seconds. Passengers get on at the bottom of the wheel, which is 1 metre off the ground. Suppose you get on, and the wheel starts to rotate.

a) Write a sinusoidal equation which expresses your height as a function of elapsed time.

c) If you are on the Ferris wheel for 5 minutes, how many complete rotations will you have completed?

$$5 \text{ min} = 300 \text{ Sec}.$$
 $\frac{300}{40} \text{ sec}$ $7 \text{ complete} \text{ rotations}$ 10 complete 10 sec 10 complete $10 \text{ co$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 391-393 #1 - 6, 9, 12 [13,14]

Today's Homework Practice includes: pp. 398-401 #1 – 4, 6, 7, 9 [13]

Tomorrow's Review: pp. 404-405 #1 – 3, 6, 8 – 10, 12, 13

p. 391

4. Determine the equation for each sinusoidal function.

i)
$$d=0, :: a=-5$$
 $p_{x,y,k=2}$
 $: R = \frac{366}{3}$
 $= 180$
 $c = 25$
 $y = -5 \sin(180x) + 25$

p. 392

5. For each table of data, determine the equation of the function that is the simplest model.

b)	X	−180°	0°	180°	360°	540°	720°	900°			
	y	17	13	17	21	17	13	17			

:.
$$y = -4\cos(\frac{1}{4}x)+17$$

 $y = 4\cos(\frac{1}{4}x)+17$
NOT CORRECT

But
$$y = 4\cos(\frac{1}{2}k-180)+17$$

= $4\cos(\frac{1}{2}(k-360))+17$

- p. 392
 - **6.** Determine the equation of the cosine function whose graph has each of the following features.

	Amplitude	Period	Equation of the Axis	Horizontal Translation
a)	3	360°	y = 11	0°
b)	4	180°	<i>y</i> = 15	30°
c)	2	40°	y = 0	7°
d)	0.5	720°	<i>y</i> = −3	−56°

6. a) Since the amplitude is 3, a in the function $y = a \cos(k(x - d)) + c$ is 3. Since the period is 360°, k in the function

$$y = a \cos(k(x - d)) + c \text{ is } \frac{360}{360} \text{ or } 1. \text{ Since}$$

the equation of the axis is y = 11, c in the equation $y = a \cos(k(x - d)) + c$ is 11. Since the horizontal translation is 0° , d in the equation $y = a \cos(k(x - d))$ is 0. Therefore, the equation is $y = 3 \cos x^{\circ} + 11$. This can also be expressed as is $y = 3 \sin(x + 90)^{\circ} + 11$.

b) Since the amplitude is 4, a in the function $y = a \cos(k(x - d)) + c$ is 4. Since the period is 180° , k in the function

$$y = a \cos(k(x - d)) + c \operatorname{is} \frac{360}{180} \text{ or } 2. \text{ Since}$$

the equation of the axis is y = 15, c in the equation $y = a \cos(k(x - d)) + c$ is 15. Since the horizontal translation is 30°, d in the equation $y = a \cos(k(x - d))$ is 30. Therefore, the equation is $y = 4 \cos[2(x - 30)]^{\circ} + 15$. This can also be expressed as $y = 4 \sin[2(x + 15)]^{\circ} + 15$.

c) Since the amplitude is 2, a in the function $y = a \cos(k(x - d)) + c$ is 2. Since the period is 40°, k in the function

$$y = a \cos(k(x - d)) + c \text{ is } \frac{360}{40} \text{ or } 9. \text{ Since the}$$

equation of the axis is y = 0, c in the equation $y = a \cos(k(x - d)) + c$ is 0. Since the horizontal translation is 7° , d in the equation $y = a \cos(k(x - d))$ is 7. Therefore, the equation is $y = 2 \cos 9(x - 7)^{\circ}$. This can also be expressed as is $y = 2 \sin 9(x + 3)^{\circ}$.

d) Since the amplitude is 0.5, a in the function $y = a \cos(k(x - d)) + c$ is 0.5. Since the period is 720°, k in the function

$$y = a \cos(k(x - d)) + c \text{ is } \frac{360}{720} \text{ or } \frac{1}{2}$$
. Since the

equation of the axis is y = -3, c in the equation $y = a \cos(k(x - d)) + c$ is -3. Since the horizontal translation is -56° , d in the equation $y = a \cos(k(x - d))$ is -56. Therefore, the

equation is
$$y = 0.5 \cos \left[\frac{1}{2}(x + 56)\right]^{\circ} - 3$$
.

This can also be expressed as

$$y = 0.5 \sin \left[\frac{1}{2} (x + 236) \right]^{\circ} - 3.$$

p. 393

9. The table shows the velocity of air of Nicole's breathing while she is at rest.

Time (s)	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2	2.25	2.5	2.75	3
Velocity (L/s)	0	0.22	0.45	0.61	0.75	0.82	0.85	0.83	0.74	0.61	0.43	0.23	0

- a) Explain why breathing is an example of a periodic function.
- b) Graph the data, and determine an equation that models the situation.
- c) Using a graphing calculator, graph the data as a scatter plot. Enter your equation and graph. Comment on the closeness of fit between the scatter plot and the graph.
- d) What is the velocity of Nicole's breathing at 6 s? Justify.
- e) How many seconds have passed when the velocity is 0.5 L/s?

9. a) The respiratory cycle is an example of a periodic function because we inhale, rest, exhale, rest, inhale, and so on in a cyclical pattern.

The amplitude is half the distance between the maximum and minimum values. Since the minimum is 0 and the maximum is 0.85, the

amplitude is
$$\frac{0.85 - 0}{2}$$
 or 0.425. Since the

amplitude is 0.425, a in the equation $v = a \cos(k(t - d)) + c$ is 0.425. The period is the change in t that occurs as the function goes through one complete cycle. Since the graph goes through one complete cycle between t = 0 and t = 3, the period is 3 - 0 or 3. Since the period is 3, k in the equation

$$v = a\cos(k(x - d)) + c \text{ is } \frac{360}{3} \text{ or } 120. \text{ The}$$

equation of the axis is the equation of the horizontal line that is halfway between the maximum and the minimum. Since the minimum is 0 and the maximum is 0.85, the equation of the

axis is
$$y = \frac{0.85 + 0}{2}$$
 or $y = 0.425$. Since the

equation of the axis is y = 0.425, c in the equation $v = a \cos(k(t-d)) + c$ is 0.425. Since the function crosses the y-axis at its minimum value, the equation for it should use the cosine function and be reflected in its axis. Since there is a reflection in the x-axis, the sign of a in the equation $v = a \cos(k(t-d))$ should be negative. Since there is no horizontal translation, d in the equation $v = a \cos(k(t-d))$ is 0. Therefore, the equation is $v = -0.425 \cos(120t)^{\circ} + 0.425$. This can also be expressed as $v = -0.425 \sin(120t + 90)^{\circ} + 0.425$.

The equation is almost an exact fit on the scatter plot.

d) The first cycle goes from 0 s to 3 s.

Therefore, the second cycle goes from 3 s to 6 s. Since each cycle is the same, the velocity of Nicole's breathing at 3 s is the same as the velocity of Nicole's breathing at 6 s. Therefore, the velocity of Nicole's breathing at 6 s is 0 L/s.

e) Since the equation for this situation is $v = -0.425 \cos (120t)^{\circ} + 0.425$,

 $0.5 = -0.425\cos(120t)^{\circ} + 0.425$

 $0.075 = -0.425 \cos (120t)^{\circ}$

 $-0.176 = \cos(120t)^{\circ}$

100.164 = 120t

 $t = 0.8 \, s$

Since 0.8 s have passed when the velocity is 0.5 L/s, and since the maximum occurs at 1.5 s, the difference between the time at the maximum and the time at velocity 0.5 L/s is 1.5 s - 0.8 s or 0.7 s. Since the curve is symmetrical, a velocity of 0.5 L/s also occurs at 1.5 s + 0.7 s or 2.2 s.

p. 393

- 12. Describe a procedure for writing the equation of a sinusoidal function based on a given graph.
- Find the amplitude. Whatever the amplitude is, a in the equation $y = a \cos(k(x - d)) + c$ will be equal to it. Find the period. Whatever the period is, k in the equation $y = a \cos(k(x - d)) + c$ will be equal to 360 divided by it. Find the equation of the axis. Whatever the equation of the axis is, c in the equation $y = a\cos(k(x-d)) + c$ will be equal to it. Find the phase shift. Whatever the phase shift is, d in the equation $y = a \cos(k(x - d)) + c$ will be equal to it. Determine if the function is reflected in its axis. If it is, the sign of a will be negative; otherwise, it will be positive. Determine if the function is reflected in the y-axis. If it is, the sign of k will be negative; otherwise, it will be positive.