Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) contrast simple and compound interest.
- b) calculate simple interest.
- c) calculate the "future value" of a principal with compound interest.

Last day's work: pp. 468-469 #3, 4, 7 – 10, (14 – 16)ace,

(Review) 18ace, 19b, 20, 22, 23ace
p. 470 #1 – 5, 7, 8

p.469 #196

find S8 geo. ser.
$$t_1 = 42$$
 $t_4 = 2112$

g.ser. $t_1 = ar^0$ $t_9 = ar^8$
 $a = 42$ $t_1 = 42$ $2112 = 42r^8$
 $r = 8 = 42$
 $r = 8 = 42$
 $t_1 = 42$ $2112 = 42r^8$
 $t_1 = 42$ $2112 = 18$
 $t_2 = 42$
 $t_3 = 1$
 $t_4 = 42$
 $t_4 = 42$
 $t_5 = 42$
 $t_7 = 6$
 $t_7 = 6$

8.1 Simple Interest
8.2 Compound Interest (Future Value)

1 Amanda invests \$500 at 8% / simple interest. Ex.1 Amanda invests \$500 at 8% / simple interest.

a) Calculate the interest earned after 5 years.

$$I = ?$$
 $P = 500$
 $I = 900 = 500(0.08)(5)$
 $I = 200
 $I = 200

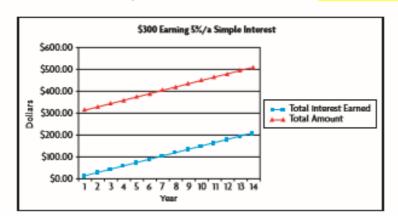
b) Determine the total amount of her investment after 5 years.

$$A = P + T$$

$$= 500 + 200$$

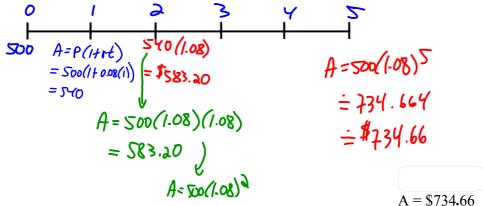
$$= 700$$

$$A = $700$$

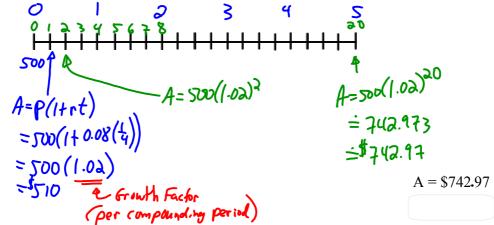

Note: Simple interest represents linear growth.

The function that models Amanda's investment is:

$$f(x) = 40x + 500$$
 or in general: $f(x) = (Pr)x + P$


Simple interest is calculated only on the principal.

The total amount, A, and interest earned, I, are linear functions in terms of time, so their graphs are straight lines (see graph below). The values of A and I at the end of each interest period form the terms of two arithmetic sequences.


Ex.2 Amy invests \$500 at 8% /a compounded annually.

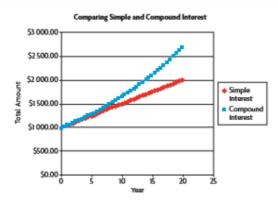
a) Determine the total amount of her investment after 5 years.

Ex.3 Ariel invests \$500 at 8% /a compounded quarterly.

a) Determine the total amount of her investment after 5 years.

Note: Compound interest represents exponential growth.

The function that models Amy's investment is:


$$f(x) = 500(1.08)^x$$
 or in general: $f(x) = ab^x$

For Ariel: $f(x) = 500(1.02)^{4x}$

Compound interest is calculated by applying the interest rate to the principal and any interest already earned.

The total amounts at the end of each interest period form a geometric sequence. So compound interest results in exponential growth.

The total amount, A, of an investment after a certain period is called the future value of the investment.

Simple and Compound Interest Formulae

Simple Interest

$$I = Prt \quad A = P+I$$

$$A = P(1 + rt)$$

Compound Interest

$$A = P(1+i)^n$$

i = interest rate per compounding periodn = number of compounding periods

Ex.4

a) Determine the future value of \$1800 invested at 6% /a compounded semi-annually for 20 years.

$$A = ? = 0.06 = A = P(1+i)^{n}$$

$$P = 1800 = 2 = (800(1+\frac{0.0b}{3})^{1/2})$$

$$= 1800 = 2000$$

$$= 587(.66b)$$

$$= 1800 = 1800$$

A = \$5871.67

b) How long will it take for this investment to at least double?

$$A = 3600 \qquad A = P(1+i)^{n}$$

$$P = 1800 \qquad 3600 = (800(1.03)^{2n})$$

$$= 0.03 \qquad 3600 = (.03)^{2n}$$

$$= 0.03 \qquad 1800 \qquad 2n$$

$$1 = 20.03 \qquad 2 = (.03)^{2n}$$

about 11.72 years

$$\log 2 = (\log 1.03)$$

$$\log 2 = 20 \log 1.03$$

$$\log 2 = 10 \log 1.03$$

: it takes about 11.72 years to double.

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 468-469 #3, 4, 7 – 10, (14 – 16)ace, 18ace, 19b, 20, 22, 23ace p. 470 #1 – 5, 7, 8

Read the Key Ideas/Need to Know pp.480-481 and p.489

Study for the Unit 7 Summative!!

Today's Homework Practice includes:

pp. 481-482 #5 - 10

pp. 490-492 #4 - 9, 11, 14 [20]