Properties of Graphs of Functions (1.3)

Math Learning Target:

"I can compare properties between parent functions, and within a parent function's family."

A <u>transformation</u> is a geometric operation, such as a translation, reflection and compression.

Each transformation is performed on a parent relation. There are very many parent relations. A **parent function** belongs to the set of parent relations and is the simplest function in a family of functions. For example, the family of quadratic functions are all constructed from $y = x^2$.

Here are the seven parent functions that will be used often...

$$y = x$$

$$y = x^2$$

$$y = x$$
 Interval(s) of increase:
Interval(s) of decrease:
End behaviours:

$$y = \frac{1}{x} \qquad y = |x|$$

$$y = \frac{1}{x}$$
 Interval(s) of increase:

End behaviours:

$$y = x^2 \frac{\text{Interval(s) of increase:}}{\text{End behaviours:}}$$

$$y = |x|$$
 Interval(s) of increase:
End behaviours:

$$y = \sqrt{x}$$
 $y = b^x$ i.e. $b = 2$

$$y = \sqrt{x}$$
 Interval(s) of increase:
Interval(s) of decrease:
End behaviours:

$$y = \sin(x)$$

$$y = \sin(x)$$
 End behaviours:

A function is **odd** when f(-x) = -f(x)

A function is **even** when f(-x) = f(x)

Example 1 Is $y = x^2$ even, odd, or neither? Prove algebraically.

Example 2 Is $y = \frac{1}{x}$ even, odd, or neither? Prove algebraically.

Graphically, a function is even when Graphically, a function is odd when

Do: pg. 23 #3*, 4ad, 5**, 6, 7, 8, 10***, 15

* Error in answer: the function can be derived from any y=bx, for any valid "b"),

** The instructions are poor. Simply apply what was learned today in the lesson.

***In #10a, in the instructions for the question change $(-\infty, -2)$ to $(-\infty, 2]$

YES, you have permission to write in the textbook to make this change!