MHF 4UI: Local and Global Extrema Practice

Given a function y = f(x) defined on $0 \le x \le 6$:

For this function's domain, state the integer(s) x that correspond to a...

Local minimum	Local maximum	Global minimum	Global maximum
K=1,2	X=3	X=1	X=3

pp.103-106 #1, 2*, 3 to \(\varphi^*, 10, 11, 14 \)
* in #2, the answer in the back has a small error.

Do you know what it is? Also, the answer for #9 in the back has some mistakes.

pp.116-117 #2, 3,5* an estimate is required only, 6a*find the quadratic equation first then use the preceding interval method, 8, 9, 10, 11ab*use the algebraically simplified DQ, 13

p.118 (45 minutes max) #1,2,3,4a* use the algebraically simplified DQ

Wed. Sept. 27 Use the ALGEBRAICALLY SIMPLIFIED DIFFERENCE QUOTIENT FOR ALL RATE OF CHANGE CALCS

pp.111-113 #1, 3, 4, 6c, 9a, 10, 14

5 c

pp.116 #5

- **5.** The height, in centimetres, of a piston attached to a turning wheel at time t, in seconds, is modelled by the equation $y = 2 \sin(120^{\circ}t)$.
 - a) Examine the equation, and select a strategy for finding the instantaneous rate of change in the piston's height at t = 12 s.

pp.116 #6

6. For the graph shown, estimate the slope of the tangent line at each point.

- a) (4, 2)
- **b**) (5, 1)
- c) (7,5)

PALL		
	1. C(x) = 0.3x -0.9x +1.675 @ X=1.	5 (1500)
	iroc = M(mont) = C(1.5 + h) - C(1.5) , as had	
	h	, , , , , , , , , , , , , , , , , , ,
	=[0.3(1.5+h)2-0.9(1.5+h)+1-675]-[5.3(15) -0.9(15)+1.675 as h>0
	h	
	= (0.3 (2.25+3h+h2)-1.35-0.9h+1.67.	5]-[0.675-1.35+1.675], as ho
	h	
	= 0.675+0.9h+0.3h2-0.9h+0.325	$-(1)$ as $h \neq 0$
	h	ти од не у видиненти на при на
	= 0.3h2 as h70	Α.
	h	h<0/h=0/h>0
	= 0.3h , as higo	- 0 / t
	: As h=0, iroc =0	minimum C(x)
	:. at x=1.5 (1500), Mangart =0	: 1500 items is local min &
	: local max or min.	4 most economical production level
		(

- 2. A cup of hot cocoa left on a desk in a classroom had its temperature measured once every minute. The graph shows the relationship between the temperature of the cocoa, in degrees Celsius, and time, in minutes.
 - a) Determine the slope of the secant line that passes through the points (5, 70) and (50, 25).
 - b) What does the answer to part a) mean in this context?
 - c) Estimate the slope of the tangent line at the point (30, 35).
 - d) What does the answer to part b) mean in this context?
 - e) Discuss what happens to the rate at which the cup of cocoa cools over the 90 min period.

 $= x^{2} + 2xy + ya$ (4xz2-3y4)2 = 16 XZ4-24xzy4 tey8 $(x-y)^3$ $=1x^3-3xy+3xy^2-1y^3$ $(x+y)^8$

p.111 #6

6c) f(x)= x2-9x (4.5, -20-25)	
My = 100C target = f(45+h)-f(45), as h-70	
h	
$= (4.5 + h)^{2} - 9(4.5 + h) - (4.5)^{2} - 9(4.5)$, as $h \neq 0$	
$= 20.25 + 9h + h^{2} - 405 - 9h - [20.25 - 40.5], as high$	hso/h=0/h20
h	- 0 +
= h ² -20-25-(-20.25), as h70	: local minimum
$=\frac{h^2}{h}, as h > 0$	Stort and story to some
As hoo, my=0 : local max or min	
13 hoo, m/ so wear max of min >	

p.111 #10

10. h(t) = -5t2+5t+10 ; max at t=0.5	
iroc = Mtangent = f(0.5 +h) -f(0.5), &s h>0	
$= \left[-5(0.5+h)^{2} + 5(0.5+h) + 10 \right] - \left[-5(0.5)^{2} + 5(0.5) + 10 \right] \text{as } h \neq 0$	
h	
=[-5(0.25+h+h2)+2.5+5h+10]-[-1.25+2.5+10], as h70	
$= -1.25 - 5h - 5h^{2} + 5h + 12.5 - (11.25), as high$	
h	
= -5h2 white his his	70
h + 0 -	
: as haro, iroe ao : loeal maximum	
: at t=0.5, m4=0	
: local max or min.	

p.118 #4
$(4a) h(p) = 2p^2 + 3p$ $p = -1$
p=-0.75
iroc=f(-1+h)-f(-1)
h = 2(-0.75+h) +3(-0.75+h) - 2(-0.75) +3(-0.75) (4h7)
= 2 (-1+h) = +3(-1+h) - /2(-1) = +3(-1) = +
1=2 (0.5625-15h+h)-225 13h-[1.125-2.25] 19h76
=2(1-2h+h2)-3+3h-(2-3], ay h70
h = 1,125 - 3 h + 2 h - 225 + 3 h - (-1,125) as how
= 2-4h +2h 2-3+3h +1, @ h>0
$\int = 2h^2 \text{ as } h \neq 0 \qquad h < 0 h \neq 0$
= 2h - h wy $h > 0$
$\frac{2h-h}{h} \text{ as his} $
=2/7-1 ws h70 =0 :, p=-0.75 is local min.
= -1
-262 176 01-2
$= 2h^{\alpha} + 7h ayh75$
p=1 $iroe = f(1+h) - f(i)$ $= 2h + 7, 0470$
iroe = + (1+h) - +(1) = 2h+7, eshipo
$=2(1+h)^2+3(1+h)-[2(1)^2+3(1)] \text{ as his } =7$
h
= 2 (1+2h+h2)+3+3h-[5], as h>0
h
= 2+4h+2h2+3h-2 am h>6
1 CAN MY O

Extin

$$f(x) = 5 \sin x$$
 at 90°
 $f(x) = 5 \sin x$ at 90°
 $f(x) = 10^{\circ}$