3.3 Characteristics of Polynomial Functions (in Factored Form)

Math Learning Target:

I can identify properties of polynomial functions when expressed in factored form. I can express any polynomial function in its factored form, and then graph it."

Recall: To **factor** a number (or expression) means to determine the numbers (or expressions) that divide into it with a remainder of zero.

Recall: A **prime number** is a positive number that has only two unique factors: 1 and itself. Note that the number 1 is not prime.

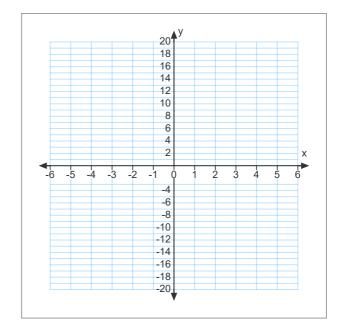
Recall: The **zeros** of a function y=f(x) are all real numbers x such that f(x)=0. They correspond to the x-intercepts of the function y=f(x). In the *INVESTIGATE* from a previous class, you learned that a polynomial function of degree n may have up to n distinct zeros.

If a polynomial function y=f(x) with degree n has exactly n distinct zeros, then the factored forms are:

degree = 1	linear	f(x) = a(x - p)
degree = 2	quadratic	f(x) = a(x-p)(x-q)
degree = 3	cubic	f(x) = a(x-p)(x-q)(x-r)
degree = 4	quartic	f(x) = a(x-p)(x-q)(x-r)(x-s)
degree = 5	quintic	f(x) = a(x-p)(x-q)(x-r)(x-s)(x-t)
etc	etc	etc

If a polynomial function y=f(x) with degree n has less than n distinct zeros, but at least one zero, the function can still be expressed in factored form, but there will not be n distinct factors.

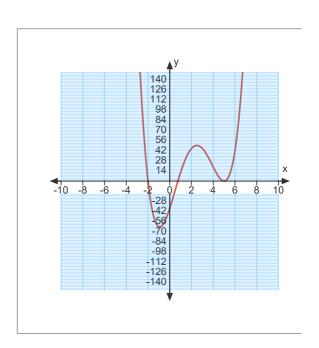
Ex.1 Sketch $f(x) = 2(x+1)^2(x-3)$



Ex.2 Sketch $g(x) = -x^3 + 6x^2 - 9x$

Ex. 3 a) Determine the equation of the quartic function with zeros -2, $\frac{3}{4}$, 5(order 2) and a y-intercept of y = -37.5.

b) Determine at least two other functions that belong to the same family.



Now complete pp.146-148 #1, 2a, 4b, 6be, 8ab, 9ab, 10d, 13a, 16*

* for 16b you will need to use desmos