## Answers to Explore the Math

- **A.** The polynomial expressions all involve only the sum of constant multiples of non-negative integer powers of *x*.
- **B.** Some have negative or fractional powers of x. Others have an x in the denominator of a fraction. Still others have x's and y's, and one even involves a sine function.
- **C.** Answers may vary. A polynomial expression is an expression that is the sum of constant multiples of non-negative integer powers of *x*.

D.

| Polynomial<br>Function | Туре      | Sketch of Graph                                    | Description of<br>Graph                                                    | Domain and<br>Range                                                   | Existence<br>of<br>Asymptotes? |
|------------------------|-----------|----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|
| f(x) = x               | linear    | 8 4 4 8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -      | The graph is a line through (0, 0) at a 45° angle to the x-axis.           | $D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}\}$              | None                           |
| $f(x) = x^2$           | quadratic | 8-<br>4-<br>4-<br>2-4-2-0-2-4                      | The graph is a parabola through (0, 0) opening up.                         | $D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}   f(x) \ge 0\}$ | None                           |
| $f(x) = x^3$           | cubic     | 40<br>40<br>40<br>2 4<br>-40<br>-80                | The graph increases from —∞ to ∞ and flattens out around the origin.       | $D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}\}$              | None                           |
| $f(x) = x^4$           | quartic   | 300-<br>200-<br>100-<br>-4 -2 0 2 4                | The graph looks like the graph of $x^2$ only much flatter near the origin. | $D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}   f(x) \ge 0\}$ | None                           |
| $f(x) = x^5$           | quintic   | 2000-1<br>1000-<br>-4 -2 0 2 4<br>-1000-<br>-2000- | The graph looks like the graph of $x^3$ only much flatter near the origin. | $D = \{x \in \mathbb{R}\}$ $R = \{f(x) \in \mathbb{R}\}$              | None                           |

E. The linear, cubic, and quintic behave similarly and all have odd powers, while the quadratic and quartic behave similarly and have even powers.

F.

| f(x) = x   | $\Delta_{1}$ |
|------------|--------------|
| f(-3) = -3 |              |
| f(-2) = -2 | 1            |
| 1(-2)2     | 1            |
| f(-1) = -1 |              |
| f(0) = 0   | 1            |
|            | 1            |
| f(1) = 1   | 1            |
| f(2) = 2   | - :          |
| f(3) = 3   | 1            |
| 7(0) - 3   | I            |

| $f(x)=x^2$ | $\Delta_1$ | $\Delta_2$ |
|------------|------------|------------|
| f(-3) = 9  |            |            |
| f(-2) = 4  | -5         | 2          |
| f(-1) = 1  | -3         | 2          |
| , ,        | -1         | _          |
| f(0)=0     | 1          | 2          |
| f(1) = 1   | 2          | 2          |
| f(2) = 4   |            | 2          |
| f(3) = 9   | 5          |            |

| $f(x)=x^3$  | $\Delta_1$ | $\Delta_2$ | $\Delta_3$ |
|-------------|------------|------------|------------|
| f(-3) = -27 |            |            |            |
| f(-2) = -8  | 19         | -12        |            |
| f(-1) = -1  | 7          | -6         | 6          |
|             | 1          | -0         | 6          |
| f(0)=0      | 1          | 0          | 6          |
| f(1) = 1    | <u> </u>   | 6          |            |
| f(2) = 8    | /          | 12         | р          |
|             | 19         |            |            |
| f(3) = 27   | <u> </u>   |            |            |

| $f(x)=x^4$ | $\Delta_1$ | $\Delta_2$ | $\Delta_3$ | $\Delta_{4}$ |
|------------|------------|------------|------------|--------------|
| f(-3) = 81 | 0=         |            |            |              |
| f(-2) = 16 | -65        | 50         |            |              |
| f(-1) = 1  | -15        | 14         | -36        | 24           |
|            | -1         |            | -12        |              |
| f(0) = 0   | 1          | 2          | 12         | 24           |
| f(1) = 1   | 15         | 14         |            | 24           |
| f(2) = 16  |            | 50         | 36         |              |
| f(3) = 81  | 65         |            | 1          |              |

| $f(x)=x^5$   | $\Delta_1$ | $\Delta_2$ | $\Delta_3$ | $\Delta_4$ | $\Delta_5$ |
|--------------|------------|------------|------------|------------|------------|
| f(-3) = -243 | 044        |            |            |            |            |
| f(-2) = -32  | 211        | -180       |            |            |            |
| f(-1) = -1   | 31         | -30        | 150        | -120       |            |
| f(0) = 0     | 1          | 2          | 30         | 0          | 120        |
|              | 1          |            | 30         | 120        | 120        |
| f(1) = 1     | 31         | 30         | 150        | 120        |            |
| f(2) = 32    | 211        | 180        |            |            |            |
| f(3) = 243   |            |            |            |            |            |

The number of finite differences to get down to a constant is determined by the degree of the polynomial. **G.** Answers may vary, but the number of finite differences needed to obtain a constant should be the same as the degree of the polynomial.

## Answers to Reflecting

- **J.** There is a y or a f(x) present.
- K. Both are sums of constant multiples of non-negative integer powers of x.
- L. As the degree increases, the graph flattens out near the origin and becomes steeper away from the origin. The number of finite differences needed to obtain a constant increases with the degree.
- M.The definition of a polynomial function can now be "a function in which finite differences eventually become constant."