pp. 127-128 # 1, 2, 3d, 5, 7, 8

- 5. Draw a graph of a polynomial function that satisfies all of the following characteristics:
 - f(-3) = 16, f(3) = 0, and f(-1) = 0
 The y-intercept is 2.

 - $f(x) \ge 0$ when x < 3.
 - $f(x) \le 0$ when x > 3.
 - The domain is the set of real numbers.

3.2 Characteristics of Polynomial Functions

Math Learning Target:

"I can identify properties of any polynomial function."

A **leading coefficient** is the coefficient of the term with the highest exponent for powers of x in the polynomial expression or function. For example, 4 is the leading coefficient in the polynomial function: $f(x) = -2x + 7 + 4x^3$

A **turning point** is a point on a curve where the relation changes from increasing to decreasing, and vice versa. (*For an example see p. 30*)

An **absolute maximum** is synonymous with global maximum. An **absolute minimum** is synonymous with global minimum. (*For an example see p. 131*)

INVESTIGATE the Math. pp. 129-131 A-E and G-M. Use desmos

A chart for parts A and E has already been created for you. Answer the rest of the questions in your notebook.

	Degree	Even or	Leading	End Behaviours		Number of
	208100	Odd Degree	Coefficient	$x \longrightarrow -\infty$	$x \longrightarrow +\infty$	turning points
e) $6 \uparrow^{y} \uparrow$ $4 - 2 - 2 - 2 - 2 - 4 - 6 - 4 - 2 - 2 - 2 - 4 - 6 - 4 - 2 - 2 - 2 - 4 - 6 - 4 - 2 - 2 - 2 - 4 - 6 - 4 - 2 - 2 - 2 - 2 - 4 - 6 - 4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$						
C \						
30 - 20 - 10 - 20 - 20 - 30 - 30 - 30 - 30 - 30 - 3						
$f(x) = 2x^5 + 7x^4 - 3x^3 - 18x^2 + 5$						
g) $15 - 7$ $10 - 10 - 10 - 10 - 15$ $10 - 10 - 15$ $10 - 10 - 15$ $10 - 15$						
h) 30 ⁴						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
i) 15 1 1						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

E.	Even Functions	Odd <u>Functions</u>	Neither
i) $f(x)$	$(x) = x^4 - 2x^2 + 1$		

Read and **STUDY** p.135

Complete pp. 136-138 #1ab, 2ab, 3, 4abf, 5, 7ad, 10, 13, 14, 16

Answers to Investigate the Math

Α

		Even or	von or			Number of
		Odd Leading		End Behaviours		Turning
Equation and Graph	Degree	Degree?	Coefficient	$\chi \to -\infty$	$X \to +\infty$	Points
a) $f(x) = x^2 + 4x - 5$	2	even	+1	$y \to +\infty$	$y \to +\infty$	1
b) $f(x) = -x^4 - 2x^3 + x^2 + 2x$	4	even	-1	$y \rightarrow -\infty$	$y \to -\infty$	3
C) $\begin{cases} x_0 & x_1 \\ x_0 & x_2 \\ x_1 & x_2 \\ x_1 & x_2 \\ x_2 & x_3 \\ x_4 & x_4 \\ x_4 & x_4 \\ x_5 & x_5 \\ x_7 & x_8 \\ x_8 & x_8 \\$	4	even	3	$y \to +\infty$	$y \to +\infty$	3
d) $f(x) = 2x^6 - 12x^4 + 18x^2 + x - 10$	6	even	2	$y \to +\infty$	$y \to +\infty$	5
e) 6 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3	odd	1	$y \to -\infty$	$y \to +\infty$	2

Answers to Investigate the Math (Continued)

A.

		Even or Odd	Loading	End Be	haviours	Number of Turning
Equation and Graph	Degree	Degree?	Leading Coefficient	X → -∞	X → +∞	Points
1) x_{16} x_{16} x_{17} x_{16} x_{17} x_{18} x_{19}	5	odd	2	<i>y</i> → −∞	<i>y</i> → +∞	4
g) 30^{6}	5	odd	5	<i>y</i> → −∞	<i>y</i> → +∞	2
(1) $\frac{1}{10}$ $\frac{1}{$	3	odd	-2	$y \to +\infty$	<i>y</i> → −∞	0
$f(x) = x^4 + 2x^3 - 3x - 1$	4	even	1	$y \to +\infty$	<i>y</i> → +∞	1

- **B.** Answers may vary. Odd degrees have opposite end behaviour; even degrees have identical end behaviour. If the leading coefficient is positive and the degree is even, $y \to +\infty$ in both directions, whereas if the leading coefficient is negative, $y \to -\infty$ in both directions. In an odd degree polynomial, if the leading coefficient is positive, then as $x \to +\infty$, $y \to +\infty$ and as $x \to -\infty$, $y \to -\infty$, and vice versa for a negative leading coefficient. For a polynomial of degree n, there are at most n-1 turning points.
- C. Answers may vary, but the new polynomials should still meet the above observations.

Even Functions	Odd Functions	Neither Even nor Odd Functions
(symmetry in the y-axis)	(rotational symmetry around the origin)	(neither of these symmetries)
$f(X) = X^2$	$f(x) = x^3$	$f(x) = -x^2 + 2x$
(0)	10- / 5 5 / 5 1 25- (25- 125- 125- 125- 125- 125- 125- 125- 1	12 9 3 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
$f(x) = x^4 - 2x^2 + 1$	$f(x) = x^3 + x$	$f(x) = x^3 + 3x^2 - 2x - 5$
	4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /	
$f(x) = \frac{1}{2}x^{10} - \frac{1}{3}x^4 + x^2$	$f(x)=x^5-3x$	$f(x) = x^2 - 3x + 4$
0.5	647 4 4 1 2 1 2 1 3 4 4 1 4 1 4 1	
$f(x) = -2x^6 + 3x^4$	$f(x) = 2x^7 - 3x^3 + 2x$	$f(x) = -3x^4 + 2x^3 - 3x + 1$
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-2 pg 1 2 3	5 - 2 - 1 0 \ 5 - 2 5 2 5 2 5 2 5 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5
		$f(x) = x^2 - x$
G. No, for example, ix).		I

G. No, for example, ix).

H. No, for example, ii).

I. Polynomials of odd degree have opposite end behaviour; polynomials of even degree have identical end behaviour. If the leading coefficient is positive and the degree is even, $y \to +\infty$ in both directions, whereas if the leading coefficient is negative, $y \to -\infty$ in both directions. In an odd degree polynomial, if the leading coefficient is positive, then as $x \to +\infty$, $y \to +\infty$ and as $x \to -\infty$, $y \to -\infty$, and vice versa for a negative leading coefficient. For a polynomial of degree n, there are at most n-1 turning points. To check symmetry, check f(-x).

Answers to Reflecting

J. They have identical end behaviour on either side.

K. Because their end behaviour is opposite, which means the graph must pass through the *x*-axis at least once.

L. Yes, for example, $f(x) = x^2 + 1$.

M.It is not possible to predict it precisely, but if the degree is *n*, the number of zeros is at most *n*, and a polynomial of odd degree must have at least one real zero.