Before we begin, are there any questions from last day's work?

Entertainment: Factoring Worksheets #1-28

$$\begin{array}{ll}
24) & -12x + 6xy^{2} - 15x^{3}y^{3} \\
& = -3\varkappa(4 - 2y^{2} + 5x^{2}y^{3}) \\
28) & 8x^{3}y^{2} + 4x^{3}
\end{array}$$

$$= 4\chi^{3}(2y^{2} + 1)$$

Cycle 2 Day 6

MBF 3CI CHAPTERS 4, 5, 7: RELATIONS

LEARNING TARGET:

"I can simplify a "power of a power" and understand an exponent of zero."

1. Finding the power of a power.

Power of a Power	Expanded Form	Number of Factors of Given Base	Single Power	Short Cut
$\left(5^3\right)^2$	$(5^3)(5^3) \qquad = (5 \times 5 \times 5)(5 \times 5 \times 5)$	₫ 6	₹ 5 ⁶	53x2=56
(3 ²) ⁴	(30)(30)(33)=(3x3)(3x3)(3x3)(3x3)	<i>₽8</i>	±38	3°×4=38
$\left(\left(\frac{2}{3}\right)^2\right)^3$	$\left(\frac{2}{3}\right)^2 \left(\frac{2}{3}\right)^2 \left(\frac{2}{3}\right)^2 \left(\frac{2}{3} \times \frac{2}{3}\right) \cdot \left(\frac{2}{3} \times \frac{2}{3}\right) \cdot \left(\frac{2}{3} \times \frac{2}{3}\right)$	6	$\left(\frac{2}{3}\right)^6$	$(2)^{2x} = (2)^{6}$
((-6) ⁵) ²	(-6) ⁵ (-6) ⁵ ((-6)(-6)(-6)(-6)×(-6)(-6)(-6)(-6)(-6)	60	(6) (0)	(-6) = (-6)

Rule 3 To simplify a power of a power, keep the \underbrace{SAME}_{BASE} , and $\underbrace{MULTIPLY}_{the \ exponents}$ the exponents.

Rule 4

Any base raised to an exponent of ZERO equals ONE

a)
$$(476)^0$$

b)
$$(-32)^0$$

Simplify. a)
$$(476)^0$$
 b) $(-32)^0$ c) $(10xy^5 \div 2y^3)^0$

$$(a^m)^n$$

$$= \alpha^{m \times n}$$

4)
$$a^0$$

Ex.2 Without a calculator, write as a single power (which means simplify).

a)
$$2^2 \times 2^3$$

b)
$$10^{15} \div 10^5$$

c)
$$(2^3)^2$$

(a)
$$2^2 \times 2^3$$
 (b) $10^{15} \div 10^5$ (c) $(2^3)^2$ (d) $5^3 \times 5^4 \div 5^7$

$$=10^{5-5}$$

$$= 2^{3+3} = 10^{5-5} = 2^{344-7} = 5^{7-7} = 2^{5} = 2^{5} = 5^{7-7}$$

$$=5^{9-7}$$

Ex.3 Without a calculator, evaluate each answer in Ex.2.

Entertainment: pp. 361-363 #3a-f, 4ace, 5cde, 17a-d

p. 368 #3ad, 7aef,

p. 414 #1a-h

Go back to the Learning Target.

Can you confidently say that you have met today's goal?