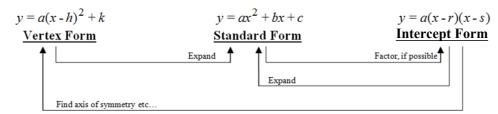
Before we begin, are there any questions from last day's work?

Do not "expand to check" – just use the back of the book to check. p. 254 #7 pp. 259-263 #1ace, 2ace, 3a, 4ace, 5ace, 6

Today's Learning Target(s):



"I can:

a) Convert a quadratic relation to intercept form, y = a(x-r)(x-s), to find the zeros (x-intercepts) and graph."

Cycle 3 Day 4

MBF 3CI CHAPTERS 4, 5, 7: RELATIONS

MBF 3CI Graphing Quadratic Relations from Standard Form

Date: No. 21/17

Ex. 1 Given the parabola with equation $y = 2x^2 + 12x + 10$.

a) convert the equation to intercept form: y = a(x-r)(x-s)

[Hint: factor the equation]

b) state the zeros (x-intercepts)

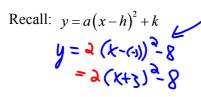
$$C = 2(X+1)(X+5)$$
 $X=-1$
 $X=-5$

c) determine the equation of the axis of symmetry

$$x = \frac{-1+(-5)}{2}$$
$$= \frac{-2}{2}$$
$$= -3$$

d) determine the vertex

Sub K = -3 in y = 2(K+1)(K+5) = 2(-3)+1(-3)+5 = 2(-3)(-3) = -3 = -3 = -3 = -3 = -3 = -3 = -3


= -3

y-intercept y=3x²+12x+10

e) sketch/the parabola below

310

f) write the equation of the parabola in vertex form

X=¹3 (A (S)

$$y = 2(x+3)^2 - 8$$

Cycle 3 Day 4

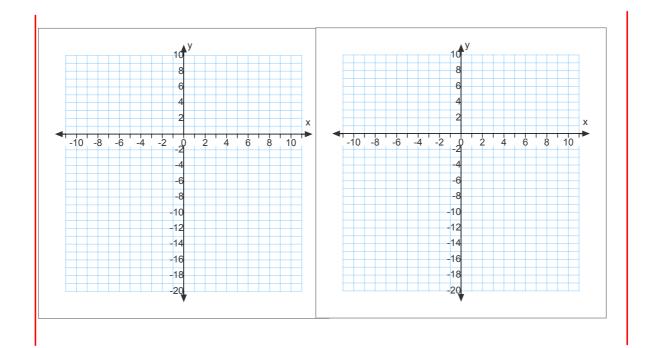
MBF 3CI CHAPTERS 4, 5, 7: RELATIONS

Summary

Given a quadratic relation in vertex form, $a(x-h)^2 + k$, the coordinates of the vertex are (h,k).

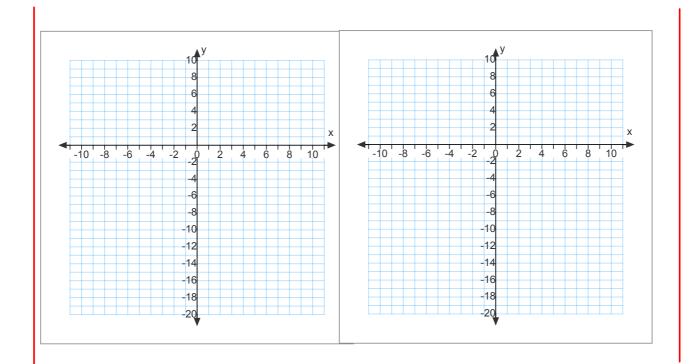
Given a quadratic relation in standard for $m = ax^2 + bx + c$, the y-intercept is 'c'.

Given a quadratic relation in intercept form, a(x-r)(x-s), the 'r' and 's' represent the intercepts.

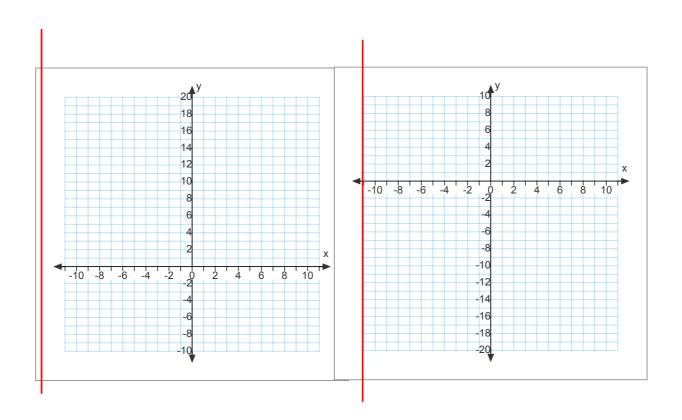

The x-intercepts are also called the eros of the quadratic relation. [y = 0 at these points] Note that the value of 'a' is the same in all 3 forms.

Today's Entertainment: PRACTICE

1. For each relation, find the zeros (*x*-intercepts) by factoring, then graph using intercept form:


a)
$$y = x^2 + 10x + 16$$

b)
$$y = x^2 - 2x - 15$$


c)
$$y = x^2 - 6x - 7$$

d)
$$y = 2x^2 - 18$$

e)
$$y = 2x^2 - 28x + 98$$

f)
$$y = 3x^2 + 39x + 108$$

