"I can use radians to graph the primary trigonometric functions.
Also, I can create formulas that describe the location of various properties of these functions, such as zeros, minimum values, maximum values, etc."

1. Complete the table, except for the last row.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$		1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$\frac{-1}{2}$		$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-\sqrt{2}}{2}$		0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$		0	$\frac{-1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$		$\frac{-1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$		1
$\frac{\sin x}{\cos x}$	0	$\frac{\sqrt{3}}{3}$	1			$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$		$\sqrt{3}$		$-\sqrt{3}$	-1		
x																	

2. Recall: $\tan x=\frac{\sin x}{\cos x}$. Graph all three primary trigonometric functions (increments of $\frac{\pi}{6}$ radians) on separate grids. Complete the properties in the table for each function.

Recall:

The general term of an arithmetic sequence...

$t_{n}=a+(n-1) d$ where a is the first term and d is what the sequence terms increase or decrease by.
3. It is more precise to write a set of values as a formula or expression.

For example, the set of numbers $\{2,4,6,8,10, \ldots\}$ can be expressed as the expression $2 n$, where n is an integer beginning at 1 .

Note: there are many formulas that can be found for this example!

Let's determine some other ways...
4. Create any formula that determines all values in the Domain for $y=\tan x$. Note: there are many formulas that could work!

