8.1 Exploring the Logarithmic Function

The <u>logarithmic function</u> $y = \log_b x$ is the *inverse* of the exponential function $y = b^x$.

Note:

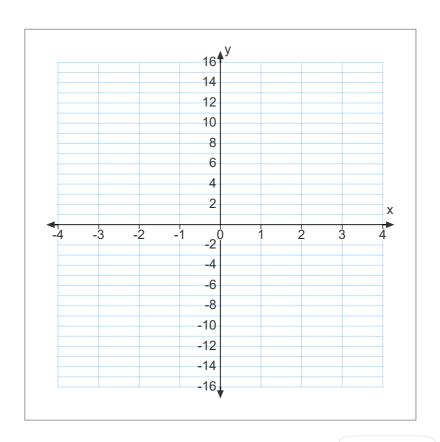
- Both relations above are functions;
- The *x*-axis is the HA for the exponential function The *y*-axis is the VA for the logarithmic (log) function
- The *y*-intercept of the exponential function is 1, while the *x*-intercept of the log function is 1
- The range of the exponential function is $\{y \in \mathbb{R} / y > 0\}$, so the domain of the log function is $\{x \in \mathbb{R} / x > 0\}$.
- The domain of the exponential function is $\{x \in \mathbb{R}\}$, so the range of the log function is $\{y \in \mathbb{R}\}$.
- The base, b, where b > 0, and $b \ne 1$.

Ex. 1:

Complete a table of values for $y = 2^x$ using integer values for x. Confirm the properties described above, after graphing its inverse.

$$y = 2^x$$

x	У
-3	
-2	
-1	
0	
1	
2	
3	

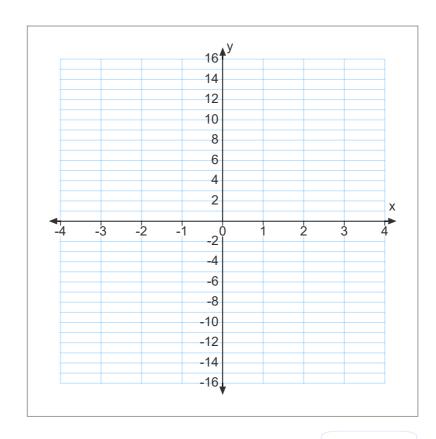


Ex. 2:

Complete a table of values for $y = \left(\frac{1}{2}\right)^x$ using integer values for x. Confirm the properties described on the first page after graphing the inverse.

$$y = \left(\frac{1}{2}\right)^x$$

X	У
-3	
-2	
-1	
0	
1	
2	
3	



Given $y = b^x$, Note:

When b > 1

When 0 < b < 1

It makes sense that if the log function is the inverse of the exponential function, then ...

Ex. 3: Without using a calculator, evaluate:

- a) $\log_5 25$
- b) log₅₅1
- c) $\log_2\left(\frac{1}{4}\right)$
- d) $\log_{10} 1000$

"I understand that a logarithmic function is the inverse of an exponential function. Also, I know their associated properties.

Finally, I can evaluate simple logarithms without a calculator."

Entertainment: p.451 #1ac, 2i and ii for 1a and 1c, 3ac, 4 to 9*, 10, 11 *Note: for #9c the answer is 3.