Chapter 6 Review Extra Practice

STUDENT BOOK PAGES 374-377

- 1. Convert each of the following radian measurements to degrees. Give your answers to two decimal places, if necessary.
 - a) $\frac{11\pi}{12}$
 - **b**) 74
 - c) 314π
 - d) $\frac{4\pi}{7}$
 - e) $\frac{21\pi}{20}$
 - f) $\frac{\pi}{22}$
- 2. For each of the following expressions, state an equivalent expression based on a related angle.
 - a) $\cot \frac{7\pi}{6}$
 - b) $\cos\left(-\frac{\pi}{6}\right)$
 - c) $\tan \frac{\pi}{2}$
 - d) $\sin \frac{\pi}{4}$
 - e) $\sec \frac{5\pi}{3}$
 - f) $\csc \frac{7\pi}{4}$
- **3.** The function $y = \cos x$ is the parent function of each of the following trigonometric functions. State the transformations that have been applied to each.

a)
$$y = -\frac{8}{21}\cos\left(\frac{3}{5}(x-9)\right) + 14$$

b)
$$y = 77 \cos \left(-\left(x + \frac{1}{8}\right) \right) - 22$$

c)
$$y = 16 \cos\left(\frac{7}{15}(x-5)\right) + 3$$

d)
$$y = \frac{2}{13}\cos(8(x+7)) - 17$$

- 4. A clock is hanging on a wall, with the centre of the clock 4.5 metres above the ground. Both the minute hand and the second hand are 13 cm long, while the hour hand is 6 cm long. Determine the equations of the sine function that describe the distance of the tip of each hand above the ground as a function of time. Assume that the time t is in hours and that the distance D(t) is in cm. Also assume that at t = 0 it is 3 AM.
- 5. State two points where each of the following functions has an instantaneous rate of change that is a positive value.

a)
$$y = -\frac{19}{20}\sin(24\pi x) + \frac{1}{40}$$

$$\mathbf{b}) y = 35 \cos\left(\frac{x}{12}\right) - 31$$

c)
$$y = \frac{1}{36} \sin(20x) + \frac{1}{18}$$

$$d) y = 58 \cos\left(\frac{9\pi x}{10}\right) - 62$$

$$e) y = -\cos\left(\frac{x}{100}\right) - 49$$

f)
$$y = \frac{3}{8} \sin (60\pi x) + \frac{1}{8}$$

6. State the average rate of change of each of the following functions over the interval $\frac{\pi}{3} \le x \le \pi$ to two decimal places, if necessary.

a)
$$y = \frac{5}{9}\cos(16x) - \frac{1}{9}$$

$$\mathbf{b}) y = 27 \sin\left(\frac{2x}{3}\right) + 28$$

c)
$$y = -4\cos\left(\frac{3x}{4}\right) - 1$$

d)
$$y = \frac{17}{20} \sin(4x) + \frac{1}{20}$$

$$e) y = 33 \cos\left(\frac{x}{6}\right) - 31$$

$$f) y = 5 \sin (101x) + 4$$