Chapter 9 Review Extra Practice

STUDENT BOOK PAGES 575-577

- 1. If $f = \{(-11, 7), (-7, -6), (-2, 16), (1, 3), (8, 13), (9, 4)\}$ and $g = \{(-11, -2), (-8, 5), (-7, 3), (-2, 1), (2, 12), (8, 6)\}$, evaluate each of the following expressions.
 - a) f + gb) f - g
 - c) g + f
 - $\frac{d}{g} = \frac{d}{f}$
 - $\begin{array}{c} \mathbf{u} \\ \mathbf{g} \\ \mathbf{e} \\ f \\ \\ f \end{array}$
 - f) = f
 - f) g + g
- 2. For each of the following pairs of functions, determine $(f \times g)(x)$.

a)
$$f(x) = 4x - 1; g(x) = x + 9$$

b) $f(x) = \sqrt{32x^3}; g(x) = \sqrt{2x^5}$
c) $f(x) = 9 \sin x; g(x) = 3 \sec x$
d) $f(x) = \frac{x^2}{4}; g(x) = \frac{96}{x}$
e) $f(x) = x - 75; g(x) = 75 - x$
f) $f(x) = 18^x; g(x) = 18^{3x}$

3. For each of the following pairs of functions, determine $(f \div g)(x)$.

a)
$$f(x) = 6x^2 - 26x + 24; g(x) = 2x - 6$$

b) $f(x) = 21 \cos x; g(x) = 3 \sin x$
c) $f(x) = 12x^2; g(x) = \frac{2}{x^2}$
d) $f(x) = 7x - 8; g(x) = \sqrt{7x - 8}$
e) $f(x) = 25^x; g(x) = 5^x$
f) $f(x) = x - 11; g(x) = 2x^2 - 19x - 33$
4. If $f(x) = 6x + 1$ and $g(x) = \frac{3x^2}{4}$, evaluate each of the following expressions.
a) $f(g(-3))$
b) $g(f(4))$
c) $(f \circ g)(\frac{1}{4})$
d) $(g \circ f)(0)$
e) $(f \circ f^{-1})(-\frac{3}{4})$
f) $(g \circ f^{-1})(5)$

- 5. For each of the following sets of functions, determine the domain and range of $f \circ g$ and $g \circ f$. a) $f(x) = x^2 - 25$; $g(x) = \cos x$ b) $f(x) = \log (x - 9)$; $g(x) = \frac{3}{2x}$ c) $f(x) = \sin x$; $g(x) = 5x^6$ d) f(x) = 9 - x; $g(x) = \frac{(3x + 7)}{(x + 4)}$ e) f(x) = 10x + 3; $g(x) = \cos^3 x$ f) $f(x) = \frac{1}{14^x}$; $g(x) = 14x^2$
- 6. Solve each of the following equations using graphing technology. Express each answer to the nearest tenth.
 a) 16 tan² x = -x² + 3x + 2

b)
$$\frac{100}{x^3} = \log(8x)$$

c) $22^x = x^{22}$
d) $9x + 8 = \sin^3 x$
e) $\frac{1}{10x - 7} = \log(7 - 10x) - 3$
f) $6x^2 - 11x - 2 = 11^x$

- 7. A country expects the growth of its population to follow an exponential model in the form $P(t) = a(b)^t$, where P(t) is the size of its population at a given time and *t* is the number of years from now. The country currently has a population of 20 000 000 people, and in 12 years, it expects its population to grow to 38 000 000 people.
 - a) Sketch a graph showing the country's population as a function of time in years.
 - b) Determine an equation that models the country's population as a function of time in years. Round *b* to four decimal places.
 - c) After how many years will the country have three times the population it has now? Round your answer to two decimal places, if necessary.
 - d) What is the average rate of change in population that the country expects during the next 16 years? Round your answer to the nearest whole number, if necessary.