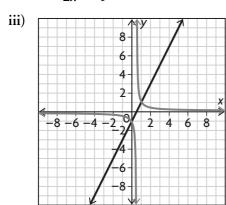
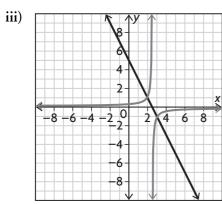
Chapter 5 Review Extra Practice Answers

- 1. a) i) $D = \{x \in \mathbb{R}\}, R = \{y \in \mathbb{R}\},\$ y-intercept = -1, x-intercept = $\frac{1}{2}$, negative on $\left(-\infty, \frac{1}{2}\right)$, positive on $\left(\frac{1}{2}, \infty\right)$, increasing on $(-\infty, \infty)$
 - $ii) \ y = \frac{1}{2x 1}$



- **b) i)** D = $\{x \in \mathbb{R}\}$, R = $\{y \in \mathbb{R}\}$, y-intercept = 5, x-intercept = $\frac{5}{2}$, negative on $\left(\frac{5}{2}, \infty\right)$, positive on $\left(-\infty, \frac{5}{2}\right)$, decreasing on $(-\infty, \infty)$
 - ii) $y = \frac{1}{5 2x}$



- 2. a) zero: 2; vertical asymptote: x = 2
 - **b**) zero: $-\frac{5}{4}$; vertical asymptote: $x = -\frac{5}{4}$
 - c) zeros: $\sqrt{3}$, $-\sqrt{3}$; vertical asymptotes $x = \sqrt{3}$, $x = -\sqrt{3}$
 - d) no real zeros, no vertical asymptotes
 - e) zeros: $\frac{4}{3}$, -6; vertical asymptote: $x = \frac{4}{3}$, x = -6

- 3. a) $x = -\frac{8}{3}$ c) x = 2

 - b) none
- d) $x = \frac{9}{2}$
- **4.** a) y = 0
- c) y = -5
- **b**) none
- d) $y = \frac{9}{2}$
- 5. a) x = 3
- d) x = 0.30, x = -1.13
- **b**) x = 67 **e**) $x = -\frac{2}{11}$
- c) x = 2
- 6. no solutions; When solving, after division you get 4 = 0 which is never true. Therefore, there are no solutions.
- 7. a) $\{x \in \mathbb{R} \mid -\infty < x < 0 \text{ or } 0 < x < \infty \}$
 - b) $\{x \in \mathbb{R} | x < -\sqrt{5} \text{ or } -\sqrt{5} < x < \infty \}$
 - c) $\{x \in \mathbb{R} \mid -20 < x < -10 \text{ or } x > -10\}$
- 8. a) m = $-\frac{3}{10}$; x = 20
 - **b**) m = $-\frac{1}{4}$; x = -6
 - c) m = 2; $x = -\frac{4}{3}$
- **9.** a) Yes at x = -4, no at x = 4. The function is defined at x = -4. However, the function is not defined at x = 4. Therefore, you cannot determine the instantaneous rate of change at that point.
 - **b**) Yes, the function is defined for $x = 4.000 \ 001$. The instantaneous rate of change exists at x = 4.000 001, but it is very small or large, because the point is approaching a vertical asymptote.