Before we begin, are there any questions from last day's work?

pp. 329-331 # 7, 11, 2, 4, 5 Extra Practice p.330 # 9, 10

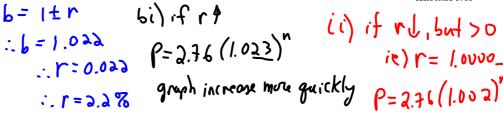
Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) use the exponent laws to simplify and evaluate expression
- b) solve exponential equations by using common bases.

1.5.1 to 1.5.3 Solving Exponential Equations Using Common Bases (Spring 2017) 195 p2018

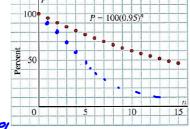
1.4.2: Applications of Exponential Functions pp. 329-331 # 7, 11, 2, 4, 5


2. The population, *P* million of British Columbia can be modelled by the equation $P = 2.75(1.000)^{n}$

 $P = 2.76(1.022)^n$, where *n* is the number of years since 1981. a) Use the equation to estimate the annual rate of growth, as a percent.

b) Describe how both the graph and the equation change in each case.

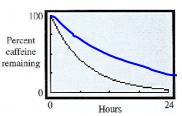
- The growth rate increases.
- The growth rate decreases.



graph incremes more slowly

4. Several layers of glass are stacked together. Each layer reduces the light passing through it by 5%. The percent, P, of light passing through *n* layers is represented by the equation $P = 100(0.95)^n$.

Again, n, is a natural number because it indicates the number of layers of glass.


- a) Estimate how many panes are needed before only 50% of the light passes through.
- b) The graph was drawn for clear glass. For frosted glass, each layer reduces the light passing through it by 10%. Describe how both the graph and the equation changes for this glass

 $P = (00(1-0.1)^{n} | (002.70)^{009-5} = 000 | (0.9)^{n} | = 0.9 | = 0.95$

5. When you consume caffeine, the percent, P, left in your body can be modelled as a function of the elapsed time, n hours, by the equation $P = 100(0.87)^n$.

Describe how both the graph and the equation may change for pregnant women, who required a much longer time to metabolize caffeine than other adults.

- 11. For every metre below the surface of water, the light intensity is reduced by 2.5%
- a) Write an equation to express the percent, P, of light remaining as a function of the depth, d metres, below the surface.
- b) Graph P as a function of d.
- c) Describe how the graph would is similar to, and different from, the graph from #4 (above) that shows the percentage of light transmitted through panes of glass.
- d) Determine the light intensity at a depth of 10 m.
- e) At what depth is the light intensity reduced to 50% of the intensity at the surface?

a)
$$b=1 \pm r$$
 $r=2.5%$
 $=1-0.025$
 $=0.025$
 $=0.025$
 $=0.025$
 $=0.025$

1.5.1: Simplifying and Evaluating Expressions Using the Laws of Exponents

Date: Feb. 13/18

Ex. 1 Evaluate without using a calculator. [You must use the laws of exponents]

a)
$$3^{-2}$$
 b) $\left(\frac{1}{4}\right)^{-2}$ c) $\frac{1}{4^{-2}}$ d) $\left(\frac{3}{4}\right)^{-2}$ e) $\left(-\frac{2}{5}\right)^{-3}$ f) $\left(\frac{81}{16}\right)^{\frac{1}{2}}$ g) $27^{\frac{2}{3}}$ h) $64^{\frac{4}{3}}$ i) $\left(\frac{16}{81}\right)^{\frac{1}{4}}$

$$= \left(\frac{1}{3}\right)^{3} = \left(\frac{4}{7}\right)^{3} = 1 \cdot 4^{3} = \left(\frac{4}{3}\right)^{3} = \left(-\frac{5}{3}\right)^{3} = \frac{200}{316} = \left(\frac{3}{27}\right)^{3} = \left(\frac{16}{81}\right)^{4} = \frac{1}{4}$$

$$= \left(\frac{1}{3}\right)^{3} = 16$$

$$= \left(\frac{1}{3}\right)^{3} = 16$$

$$= \left(\frac{1}{3}\right)^{3} = 16$$

$$= \left(\frac{1}{3}\right)^{3} = 16$$

$$= \left(\frac{1}{3}\right)^{3} = \frac{1}{4}$$

$$= \left(\frac{1}{3}\right)^{3} = \frac{1}{4}$$

$$= \left(\frac{1}{3}\right)^{3} = \frac{1}{4}$$

$$= \frac{1}{4}$$

$$= \frac{1}{4}$$

Ex. 2 Simplify using the laws of exponents.

a)
$$\sqrt{x^{5}y^{12}}$$

$$= (x^{6}y^{1}x)^{\frac{1}{2}} = x^{\frac{3}{2}}$$

$$= (x^{6})^{\frac{1}{2}}(y^{1}x)^{\frac{1}{2}} = x^{\frac{3}{2}}$$

$$= (x^{6})^{\frac{1}{2}}(y^{1}x)^{\frac{1}{2}} = x^{\frac{3}{2}}$$

$$= x^{\frac{3}{2}}(x^{6}y^{100}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{100}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(y^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(x^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(x^{10}(2x^{-4}y^{3})^{2})$$

$$= (x^{6})^{\frac{1}{2}}(x$$

Ex. 3

a) Simplify $\frac{a^3b^2c^3}{\sqrt{a^2b^4}}$, and then evaluate for a=4, b=9, and c=-3. b) Verify your answer by evaluating the

$$= \frac{a^{3}b^{3}c^{3}}{(a^{3}b^{4})^{\frac{1}{a}}}$$

$$= \frac{a^{3}b^{3}c^{3}}{a^{3}b^{3}c^{3}}$$

expression without simplifying first.

$$= \frac{(4)^{3}(9)^{3}(-3)^{3}}{\sqrt{(4)^{3}(-3)^{4}}}$$

$$= \frac{64(81)(-27)}{\sqrt{(6(654))}}$$

$$= \frac{-139968}{\sqrt{(54946)}}$$

$$= \frac{-139968}{324}$$

$$= -432$$

1.5.2: Solving Exponential Equations Using Common Bases

Ex. 1 Solve each exponential equation by determining a common base.

a)
$$2^x = 32$$

b)
$$3^{5x+8} = 27$$

$$\begin{array}{ccc} c) & 3^{2n/3} = 27^{n} \\ & 2^{n} & 2^{n} & 2^{n} \end{array}$$

d)
$$4^{5x-1} = 2^{2(x+11)} **$$

$$a^{x}=(a)^{x}$$

$$a^{x}=(a)^{5}$$
 $3^{5\times 48}=(3^{3})^{x}$ $3^{2\times 45}=(3^{3})^{4x}$ $(a^{2})^{5\times -1}=(a^{2})^{4x}$

$$x = \frac{1}{2}$$
 $x = \frac{1}{2}$
 $x = \frac{1}{2}$

$$x+8=3x$$
 $x-3x=-8$
 $x=-10x=-5$
 $x=-5$
 $x=-10x=-5$
 $x=-5$
 $x=-10x=-5$
 $x=-5$
 $x=-10x=-5$
 $x=-5$
 $x=-10x=-5$
 $x=-10x=-5$
 $x=-10x=-5$
 $x=-10x=-5$
 $x=-10x=-5$

e)
$$4^{3x} = 8^{x+1}$$

f)
$$3(2^{x-1}) = 96$$

g)
$$5(3^{x+3}) = 405$$
 h) $\sqrt{2} = 4^{x+1}$

h)
$$\sqrt{2} = 4^{x+1}$$

$$3^{X+3} = 81 \quad a^{\frac{1}{2}} = a^{X+3}$$

$$3^{\frac{3}{2}} = 3^{\frac{9}{2}} : \frac{1}{2} = 2x+2$$

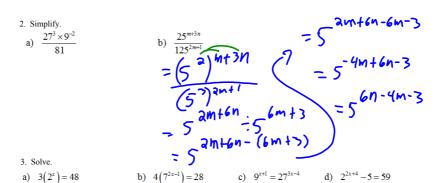
i) How could you check your solutions using graphing technology?

Answer: Use the intersection method; i.e. $y_1=2^x$, $y_2=32$

Homework: p.387 #1, 2a, 3a, 5, 6 Worksheet 1.5.3

1.5.1 to 1.5.3 Solving Exponential Equations Using Common Bases (Spring 2017) 195 p2018

1.5.3 Solving Exponential Equations Using Common Bases


1. Solve each exponential equation by determining a common base.

a)
$$2^x = 64$$

b)
$$5^{2x+6} = 125$$
 c) $5^x = \frac{1}{25}$ d) $4^x = \frac{1}{8}$

c)
$$5^x = \frac{1}{25}$$

d)
$$4^x = \frac{1}{8}$$

4. Solve.

a)
$$2^{x^2+5x} = 64$$
b) $(3^{x-3})^x = \frac{1}{9}$
c) $3^{3x+1} = 27(9^x)$
d) $(2^{x+2})(4^{x-1})(8^{2x-3}) = 256^x$

$$2^{x^2+5x} = 2^6$$

$$2^{x^2+5x} = 6$$

$$2^{x^2+5x} = 6$$

$$2^{x^2+5x} = 6$$

$$2^{x^2+5x} = 6$$

$$2^{x^2-3x} = (3^x)^x = (3^x)^x = 3^x$$

$$2^{x^2-3x} = (3^x)^x = 3^x$$

$$2^{x^2-3x} = (3^x)^x = 3^x$$

$$2^{x^2-3x} = 3^x$$

$$2^x = 3^x$$

$$3^x = 3^x$$

d)
$$(2^{x+2})(4^{x-1})(8^{2x-3}) = 256^{x}$$

$$(2^{x+2})(2^{x+3})(2$$