Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use function notation to represent linear and quadratic functions.

1.2 Function Notation

Function notation, such as f(x), is used to represent the value of the dependent variable for a given value of the independent variablex.

x is often called the input and f(x) is called the output.

$$f(x)$$
 is read "f of x" or "f at x"

Compared to the notation you have been used toy and f(x) are interchangeable.

Therefore
$$y = -3x + 4$$
 can be written as $f(x) = -3x + 4$

or
$$y = 2(x-3)^2 + 4$$
 can be written as $f(x) = 2(x-3)^2 + 4$

Ex. 1 If f(x) = -x(x-6) then find:

Ex. 1 If
$$f(x) = -x(x-6)$$
 then find:
a) $f(2)$ b) $f(a)$ c) Find x if $f(x) = -16$

$$= -(a)(a-6) = -a(a-6)$$

$$= -(b=-x)(x-6)$$

$$-(b=-x)(x-6)$$

$$-(b=-x)(x-6$$

Ex. 2 Graph f(x) = -x(x-6) is the same as...

$$f(3) = -(3)(3-6)$$

= -3(-3)
= 9 : (3,9) is the vertex

f(2) = 8 represents

Ex. 3 If
$$f(x) = x^2$$
 then find $f(x+4)$.

$$f(x+4) = (x+4)^{2}$$

$$= (x+4)^{2}$$

$$= (x+4)^{2}$$

zeros

Recall the 3 forms of quadratic functions:

 $y = ax^{2}+bx+c$ $y = a(x-h)^{2}+k$ y = a(x-r)(x-s) $= a(x-r)(x-r_{2})$ intercept factored

Are there any Homework Questions you would like to see on the board?

Last day's work: p. 2 #1 -8 READ pp. 5-9 pp. 10-11 #1 -3, 6, 7a, 8, 9b [p.13 #1-3] pp. 35-36 #1 - 3, 5

Today's Homework Practice includes:

pp. 22-23 #1, 2, 4 – 7, 9, 10 Funcon Notaon Worksheet #1 – 6

(answer keys on class website)