## Today's Learning Goal(s):

By the end of the class, I will be able to:

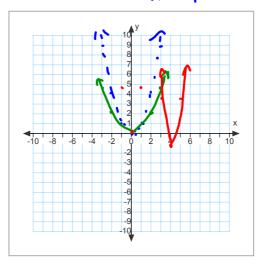
a) determine the inverse of a linear function.

## SWYK First?

80

Last day's work: pp. 70-73 #6bc, 7c, (8,9)ac, 10, 12,

16, 18 [20, 22] +3 Quesons

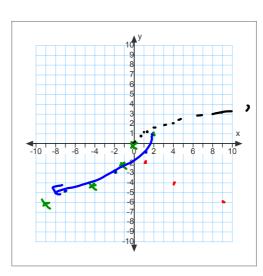

p. 71 #7c

7. If  $f(x) = x^2$ , sketch the graph of each function and state the domain and range.

a) 
$$y = f(x-2) + 3$$

c) 
$$y = 0.5f(3(x-4)) - 1$$

D: 3xer23 R: Eyere ( y 2 - 13




**8.** If  $f(x) = \sqrt{x}$ , sketch the graph of each function and state the domain and

a) 
$$y = f(x - 1) + 4$$

c) 
$$y = -2f(-(x-2)) + 1$$

D: Reply < 13



## Today's Learning Goal(s):

By the end of the class, I will be able to:

a) determine the inverse of a linear function S

## 1.5 Inverse Functions

Date: Mar. 2/18

Inverse functions "undo" each other.

Ex.1 Complete the tables of values for each function:

$$y = 2x + 1$$

| x | y |
|---|---|
| 0 |   |
| 1 | 3 |
| 2 | 2 |
| 3 | 7 |

$$y = \frac{x-1}{2}$$

| x | y |
|---|---|
| 1 | 0 |
| 3 |   |
| 5 | a |
| 7 | 3 |

Do you see a relationship between each of the equations above?

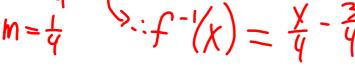
$$y = \frac{x-1}{2}$$
 is the inverse of  $y = 2x + 1$  because it "undoes" the function  $y = 2x + 1$ .

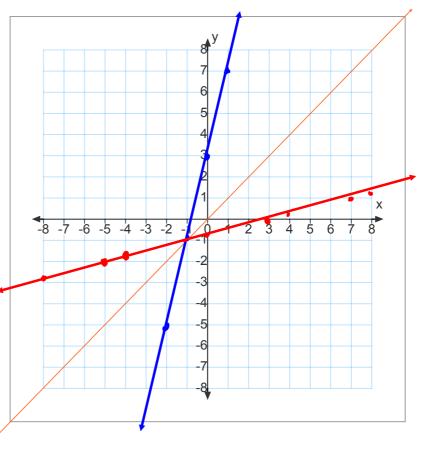
To determine the inverse of a function the *x* and *y* values are interchanged. In other words the domain and the range switch.

The inverse of a relation can be found by interchanging the domain & range:

Ex.2 What is the inverse of  $\{(1, 5), (-3, 8), (9, 2), (7, -4)\}$ ?

$$3(5,1), (8,-3), (-4,7)$$


If the inverse of a function f(x) is also a function, it is denoted


$$f^{-1}(x)$$

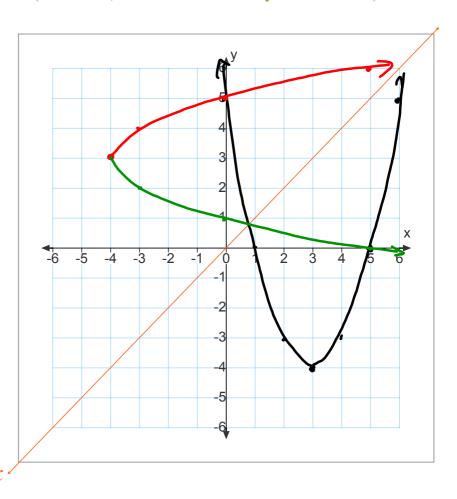
[Read as "the inverse of f" or "f-inverse"]

Ex.3 Find the inverse of the following functions and sketch the graphs of f(x) and it's inverse.








If time,

(otherwise, continue to summary on next slide)

b) 
$$g(x) = (x-3)^2 - 4$$
  
 $y = (x-3)^2 - 4$   
 $V(3,-4)$   
Inverse  
 $X = (y-3)^3 - 4$ 

$$X = (y-3)^2 - 4$$

$$y = + \sqrt{x+4} + 3$$
or
 $y = -\sqrt{x+4} + 3$ 



What do you notice about the inverse function graphs?

They reflect over the y = x line.

In summary,

 $f^{-1}(x)$  reflects over the line y = x

-f(x) reflects over the x-axis

f(-x) reflects over the y-axis

Today's Homework Practice includes: