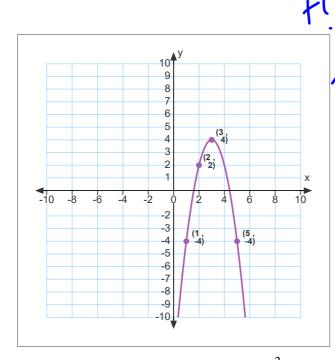
Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 76-77 #1 – 5, 7, 8, 10, 12* – 19
*use web fix

Be ready for Unit 2 Summative Tomorrow!!


p. 76 #5ac

- **5. a)** Graph the function $f(x) = -2(x-3)^2 + 4$, and state its domain and range.
- b) What does f(1) represent on the graph? Indicate, on the graph, how you would find f(x) f(1).
 - Use the equation to determine each of the following.

i)
$$f(3) - f(2)$$

iii)
$$f(1-x)$$

ii)
$$2f(5) + 7$$

 $f(3) = \lambda D = 2 \times e^{R_3}$ $f(3) = \lambda D = 2 \times e^{R_3}$ $f(3) = \lambda f(3)$ f(3) - f(3) f(3) - f(3) $f(3) + \lambda f(3)$ $f(3) + \lambda f$

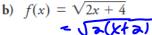
$$y = -2(x-3)^{2} + 4$$

$$= -2(1-x) = -2(1-x) - 3 + 4$$

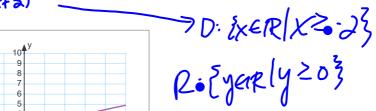
$$= -2(-x-2)^{2} + 4$$

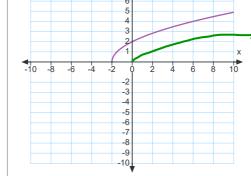
$$= -2(-x^{2} + 4) + 4$$

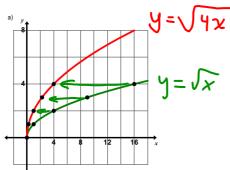
$$= -2(-x^{2} - 8x - 8 + 4)$$


$$= -2x^{2} - 8x - 4$$

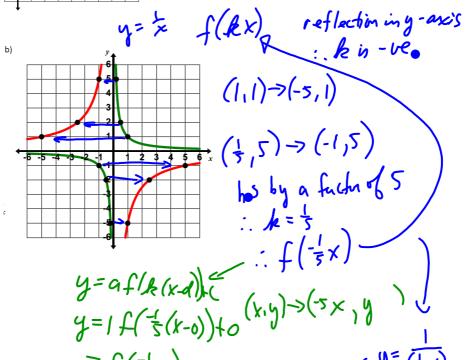
p. 76 #8b


8. State the domain and range of each function.


Poly $\in \mathbb{Z}$ | $y \ge 3$ | $f(x) = 2(x-1)^2 + 3$

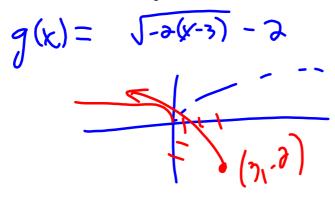


 $y = \sqrt{2x + 4}$

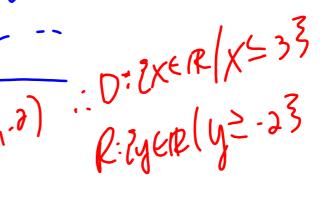


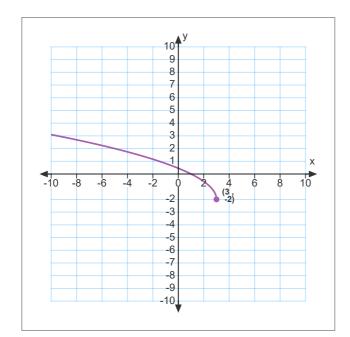
p. 76 #12a see webfix

 $= t(-\frac{2}{7}x)$

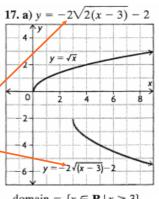


p. 77 #15 Note: The textbook answer is incorrect.


#(5
$$P(1,4)$$
 on $f(x)$
 $y = 3f[-4(x+1)] - 2$
 $(x,y) \rightarrow (\frac{1}{4}x+d, ay+c)$
 $\rightarrow (\frac{1}{4}x-1) \rightarrow (\frac$

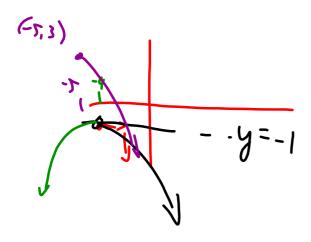

p. 77 #17a

- **17.** In each case, write the equation for the transformed function, sketch its graph, and state its domain and range.
 - a) The graph of $f(x) = \sqrt{x}$ is compressed horizontally by the factor $\frac{1}{2}$, reflected in the *y*-axis, and translated 3 units right and 2 units down.


$$y = \sqrt{-2(x-3)} - 2$$

Note: The textbook answer is incorrect.

Their answer is based on incorrectly reflecting in x-axis. I'm also not sure why a=2 in the graph?



domain = $\{x \in \mathbf{R} \mid x \ge 3\}$, range = $\{y \in \mathbf{R} \mid y \le -2\}$

p. 77 #19

- **19.** A function f(x) has domain $\{x \in \mathbb{R} | x \ge -4\}$ and range $\{ y \in \mathbb{R} \mid y < -1 \}$. Determine the domain and range of each function.
 - a) y = 2f(x)

- a) y = 2f(x)b) y = f(-x)c) y = 3f(x+1) + 4d) y = -2f(-x+5) + 1

19. a) This is a vertical stretch by a factor of 2, so it expands the upper bound of the range by a factor of 2.

Domain = $\{x \in \mathbf{R} \mid x \ge -4\}$,

range = $\{y \in \mathbf{R} \mid y < -2\}$

b) This is a reflection in the y-axis, so it will change the sign of the bound of the domain, and the direction of the inequality.

Domain = $\{x \in \mathbf{R} \mid x \le 4\}$, range = $\{y \in \mathbf{R} \mid y < -1\}$

c) This is a vertical stretch of 3, followed by translations of left 1 unit and up 4 units.

Domain = $\{x \in \mathbb{R} \mid x \ge -5\}$,

range = $\{y \in \mathbf{R} \mid y < 1\}$

d) First, rewrite the equation

y = -2f(-x - 5) + 1. This is a reflection in both the x- and y-axes, so it will change the signs of the bounds of the domain and range, and the direction of their inequalities. There is also a vertical stretch by a factor of 2, followed by translations of 5 right and 1 up.

Domain = $\{x \in \mathbb{R} \mid x \le -1\}$,

range = $\{y \in \mathbf{R} \mid y > 3\}$