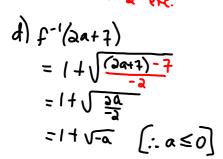
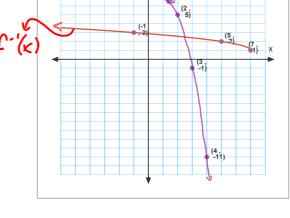
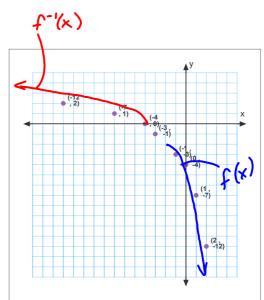

Last day's work:


pp. 160-162 #1 – 5, 7, 9, 13 [17]
$$y = -1$$


p. 161 #4c,d

y = 7



$$y = \sqrt{\frac{x-7}{-2}} + 1$$

p. 161 #7

7. Given $f(x) = -(x+1)^2 - 3$ for $x \ge -1$, determine the equation for $f^{-1}(x)$. Graph the function and its inverse on the same axes. y = -1 $y = -(x+1)^2 - 3$ f(x)=-(x+1)2-3 ;x>-1

 $X = -(y+1)^{2} - 3 ; y \ge -1$ X+3 = - (y+1)2 - (x+3) = (y+1)2 1/- (x+3) = y+1 :y=+V-(x+3)-1.,y2-1 orf-1(x)=+1-(x+3)-1

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) simplify a radical.
- b) multiply, add and subtract radical expressions.

3.4 Operations with Radicals

Date: Mar. 19/18

Recall: When working with radicals all answers must be in lowest terms. Look for factors of the radicand that are perfect squares!

Ex.1: Simplify

Ex.2: Compare

Entire radical

Mixed radical

a)
$$\sqrt{50}$$

b)
$$5\sqrt{45}$$

=
$$\sqrt{30}$$
 = $\sqrt{5}$ = $\sqrt{9}$ $\sqrt{5}$

$$4\sqrt{5}$$
 and $3\sqrt{10}$
= $\sqrt{16}\sqrt{5}$ = $\sqrt{9}\sqrt{10}$
= $\sqrt{80}$ = $\sqrt{90}$

Ex.3: Simplify

a)
$$\sqrt{6} \times \sqrt{3}$$

b)
$$\left(-2\sqrt{7}\right)\left(3\sqrt{7}\right)$$

Note: Many rules are similar to algebra:

Ex.4: Simplify

radicals

algebra

a)
$$\sqrt{2} + \sqrt{2} + \sqrt{2}$$

$$x + x + x$$

b)
$$2\sqrt{3} + 5\sqrt{3}$$

$$2x + 5x$$

c)
$$2\sqrt{3} + 3\sqrt{7}$$
 $2x + 3y$

$$2x + 3y$$

Summarizing some rules

$$\sqrt{a} + \sqrt{a} \qquad \sqrt{a} \times \sqrt{a}$$

$$= 2\sqrt{a} \qquad = \sqrt{a^2}$$

$$= \alpha$$

$$\sqrt{\frac{a}{b}} \qquad \sqrt{a} \times \sqrt{b}$$

$$= \sqrt{a} \qquad = \sqrt{a}b$$

a)
$$3(4-\sqrt{6})$$

a)
$$3(4-\sqrt{6})$$

b) $(2-3\sqrt{5})(6+\sqrt{5})$
= $12-3\sqrt{6}$
= $12-16\sqrt{5}-3\sqrt{5}$
= $12-16\sqrt{5}-3\sqrt{5}$
= $12-15-16\sqrt{5}$
= $-3-16\sqrt{5}$

d)
$$\sqrt{50} + \sqrt{27} - \sqrt{72} + 2\sqrt{12}$$

Note: The textbook gives answers with the denominator rationalized. This means that there is not a radical sign in the denominator. In order to accomplish this, just multiply by an equivalent of 1.

Ex.6: Simplify

Ex.6: Simplify

You Try: Simplify

a)
$$\sqrt{7}$$
b) $2\sqrt{3}$
c) $3\sqrt{2}$
 $2\sqrt{277}$
d)

$$= \frac{\sqrt{7}}{\sqrt{3}} \times \sqrt{3}$$

$$= \frac{\sqrt{3}}{\sqrt{3}} \times \sqrt{3}$$

$$= \frac{\sqrt{3}}{\sqrt{3$$