Are there any Homework Questions you would like to see on the board?

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) Select and apply factoring and graphing strategies to solve applications involving quadratics functions

MCF 3MI

3.5 Solving Problems Involving Quadratic Functions

Date: Man. 21 /18

Problems involving Quadratics can be solved using strategies such as:

- » a table of values (t-chart, or T of V)
- » graphing
- » factoring

Recall:

- "a" determines the direction of opening
 - > so it tells us if there is a maximum or minimum value
- draw a sketch of the scenario
- to find the maximum or minimum value:
 - > write the equation in standard form
 - > factor
 - > determine the zeros (aka. x-intercepts)
 - > determine the axis of symmetry
 - > sub the A.of S. into the equation to find the corresponding *y*-value (this is the max/min value)

Ex.1: A ball is thrown off a cliff.

The height of the ball above the ground after it is thrown is modelled by the function,

$$h(t) = -5t^2 + 10t + 175$$

where h(t) is the height in metres and t is the time in seconds.

- a) How high is the cliff?
- b) When will the ball be 160 m above the ground?
- c) When will the ball hit the ground?
- d) What is the maximum height that the ball reaches?
- e) State the domain and range for this function.

• the height of the cliff is | 75 m.

inadmiss; ble (time ≥ 0). the ball will be 160 m above the ground at 3 s.

 $y = -5t^2 + 10t + 175$

c) let h(t)=0 $0=-5t^{2}+(0t+175)$ $=-5(t^{2}-2t-35)$ =-5(t+5)(t-7) $\therefore t=-5$ inadmissible t=7 $t=\frac{-5+7}{2}$ $t=\frac{-5+7}{2}$ the ball will hit the ground at 2 s.

:.h(1)=-5(1)=+10(1)+175

the maximum height the ball reaches is ______ m.