Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) find the point of intersection between a line and a parabola.
- b) solve problems involving the intersection of linear and quadratic functions.

3.8 Linear Quadratic Systems

Date: Mar. 27/18

Ex. 1: Consider the following linear-quadratic system.

a) Solve the system by graphing.

the solutions are *approximately*

Ex. 1 (cont'd)

b) Solve the system algebraically.

$$y = (x-3)^{2} - 7$$

$$y = x-6$$

Use Substitution
$$X - 6 = (x-3)^{2} - 7$$

$$X - 6 = x^{2} - 6x + 9 - 7$$

$$0 = x^{2} - 6x + 3 - x + 6$$

$$0 = x^{2} - 7x + 8$$

$$x = \frac{7 + \sqrt{7}}{3}$$

$$x =$$

the **EXACT** solutions are
$$\left(\frac{7+\sqrt{17}}{2}, \frac{-5+\sqrt{17}}{2}\right)$$
 and $\left(\frac{7-\sqrt{17}}{2}, \frac{-5-\sqrt{17}}{2}\right)$

Ex. 2: For what values of *m* is y = mx - 2 tangent to the parabola defined by $y = -x^2 + 8x - 11$?

Ex. 2: (Graphical Check of our Solution)

$$y = -x^2 + 8x - 11$$

$$y = 2x - 2$$

$$y = 14x - 2$$

Are there any Homework Questions you would like to see on the board?

Last day's work: Max/Min Problems Worksheet #2 #1–5, 8 [6, 7]

Today's Homework Practice includes:

pp. 198-199 #1c, 2ac, 3, 4ab, 5 8 [11]