Today's Learning Goal(s):

By the end of the class, I will be able to:

a) describe the characteristics of the graphs and equations of exponential functions.

Last day's work:

pp. 235-237 #(1 - 2)ace, 3, (4 - 9)ace [14]

Review p. 239 8a c

p. 236

Se. 5. Simplify. Express answers with positive exponents. 90 = b-2-4-(-9) Ne-5

p. 236

8. Evaluate. Express answers in rational form with positive exponents.

a)
$$(\sqrt{10000x})^{\frac{3}{2}}$$
 for $x = 16$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(10000x)^{\frac{3}{2}}$ for $x = 16$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(10000x)^{\frac{3}{2}}$ for $x = 16$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a^{4}b^{6}}$ for $a = 1, b = 2$

c) $(-2a^{2}b)^{-3}\sqrt{25a$

9. Simplify. Express answers in rational form with positive exponents.

c)
$$\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^{\frac{2}{3}}$$

$$= \left(\frac{8 \alpha^{10}}{\alpha^{15} \times (-6)}\right)^{\frac{2}{3}}$$

$$= \left(\frac{8 \alpha^{6}}{\alpha^{-9}}\right)^{\frac{2}{3}}$$

$$= \left(8 \alpha^{6} - (-9)\right)^{\frac{2}{3}}$$

$$= \left(8 \alpha^{15}\right)^{\frac{2}{3}}$$

$$= \left(8 \alpha^{15}\right)^{\frac{2}{3}}$$

Exploring Properties of Exponential Functions 4.5

p. 240 Invesgate – students complete A – E individually (or in pairs).

A.
$$g(x) = x$$

		1-6
x	y	
-3	-3 🧸	-2-(-3)
-2	-2	= (
-1	-1	-1-(-2)
0	0	0-(-1)=1
1	1	1-0=1
2	2	2-1=1
3	3	3-3 = 1
4	4	(4-3 = 1
Е	Е)5-4 > 1

				4
h	\boldsymbol{x}) =	х	4

		トレ	ער
x	y]	
-3	9 5	49-	5-3-(-5)
-2	4 🕺	· -//-	-2) = 9
-1	1	1-4-	2
0	0	0-1=-	
1	1 2	1-0=1	21-41)=5
2	4)	4-1=	373-1-2
3	9	9-4=	£2-3=7
4	16	16-9-	17-T=2
5	25	M) 46=	44-7=2

 $k(x) = 2^x$

x	y	1-1
-3	1/8	4-8
-2	1/4	1-4x8=9
-1	1/2	3-4-5x4=2
0	1 •	2-1-2
1	2 -	J(+3 = 9
2	4 .	•
3	8 <	>8=4=2
4	16	
5	32	33 -(1 = 9

B. $g(x) \rightarrow$ first differences are equal i linear

 $h(x) \rightarrow$ second differences are equal-

 $k(x) \rightarrow$ ratio of successive y-values are equal

use first differences to eliminate translation?

$$R = \{y \in \mathbb{R}\}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ v \in \mathbb{R} \mid v \ge 0 \}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ y \in \mathbb{R} \mid y > 0 \}$$

E. $g(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases at a consistent rate

 $h(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) decreases until x = 0 and then increases

 $k(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases, slowly at first and then quickly.

Show with DESMOS?

C https://www.desmos.com/calculator/dcbvlufgmb

https://www.desmos.com/calculator/snogpkesaw

https://www.desmos.com/calculator/yabmbc4wcd

$$y = x$$
 $y = x^2$ $y = x^2$ $y = 2^x$ $y = 2^x$

Reminder:

Asymptotes MUST always be drawn and labelled.

G. For all 3 functions, D = $\{x \in \mathbb{R}\}$ and R = $\{y \in \mathbb{R} \mid y > 0\}$.

The y-intercept = 1, there are no x-intercepts,

and there is a Horizontal Asymptote [H.A.] at y = 0 (x-axis).

H. $y = 10^x$ increases fastest, and $y = 2^x$ has the slowest rate of increase.

- J. All properties remain the same as G.
- K. As the values of x increase the graphs with fractional bases decrease (decay).

Summary: Properties of $y = b^x$

- b > 0
- *y*-int = 1
- H.A.: y = 0 (x-axis) [Horizontal Asymptote]
- $D = \{x \in \mathbb{R}\}$
- $R = \{ y \in \mathbb{R} \mid y > 0 \}$
- Increasing when b > 1 (growth)
- The greater the value of b, the faster the growth
- Decreasing when 0 < b < 1 (decay)
- Equal ratios of successive *y*-values

For tomorrow, think about the general form of $y = a(b^x) + c$ and how the values of a and c relate to the graphs we drew today.

Today's Homework Practice includes:

pp. 240-241 A - P

READ p. 242

p. 243 #1, 2