Date:	

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) graph exponential functions using transformations.

Last day's work: pp. 261-262 # 1 - 8

Hwk p. 261 #1

1. Solve each exponential equation. Express answers to the nearest hundredth of a unit.

a)
$$A = 250(1.05)^{10}$$

b)
$$P = 9000 \left(\frac{1}{2}\right)^8$$

b)
$$P = 9000(\frac{2}{2})$$

c) $500 = N_0(1.25)^{1.25}$
f. $\frac{1}{25}^{1.25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$ $\frac{1}{25}$

$$N_0 = \frac{125}{500}$$

$$Y = N_{b}(2)^{3}$$
 d) $625 = P(0.71)$

$$\frac{627}{\left(0.71\right)^{9}} = \rho$$

Hwk p. 261 #3d

- **3.** The growth in population of a small town since 1996 is given by the function $P(n) = 1250(1.03)^n$.
 - a) What is the initial population? Explain how you know.
 - b) What is the growth rate? Explain how you know.
 - c) Determine the population in the year 2007.
 - d) In which year does the population reach 2000 people?

d)
$$2000 = 1250 (1.03)^{N}$$

$$\frac{2000}{1250} = (1.03)^{N}$$

$$1.6 = 1.03^{N}$$

$$1.6 = 1.03^{N}$$

$$1.6 = 1.03^{N}$$

$$1.0609$$

$$1.26$$

$$1.26$$

$$1.26$$

$$1.299$$

$$1.26$$

$$1.299$$

$$1.6 = 1.03^{N}$$

$$1.6 = 1.03^{N$$

Hwk p. 261 #4d

- **4.** A computer loses its value each month after it is purchased. Its value as a function of time, in months, is modelled by $V(m) = 1500(0.95)^m$.
 - a) What is the initial value of the computer? Explain how you know.
 - b) What is the rate of depreciation? Explain how you know.
 - c) Determine the value of the computer after 2 years.
 - d) In which month after it is purchased does the computer's worth fall below \$900?

4d)
$$900 = 1500 (0.95)^{m}$$

$$\frac{900}{1500} = 0.95^{m}$$

$$0.6 = 0.95^{m}$$

$$log 0.6 = log 0.95^{m}$$

$$log 0.6 = m log 0.95$$

$$log 0.6 = m$$

$$9.958 = m$$

$$9.958 = m$$

$$m = 9.96$$

Hwk p. 262 #6

- **6.** A species of bacteria has a population of 500 at noon. It doubles every 10 h.
- The function that models the growth of the population, P, at any hour, t, is

$$P(t) = 500 \left(2^{\frac{t}{10}}\right).$$

- Why is the exponent $\frac{t}{10}$?
- Why is the base 2? b)
- c) Why is the multiplier 500?
- d) Determine the population at midnight.
- Determine the population at noon the next day. e)
- Determine the time at which the population first exceeds 2000.

Determine the time at which the population first exceeds 2000.

$$\frac{2000}{500} = \lambda^{\frac{1}{10}}$$
Using logs is not a great idea in this case:
$$\frac{1}{100} = \lambda^{\frac{1}{10}}$$

$$\frac{1}{100} = \lambda^{\frac{1}{100}}$$

$$\frac{1}{100} = \lambda^{\frac{$$

Hwk p. 262 #8

8. A town with a population of 12 000 has been growing at an average rate of 2.5% for the last 10 years. Suppose this growth rate will be maintained in the future. The function that models the town's growth is

$$P(n) = 12(1.025^n)$$

where P(n) represents the population (in thousands) and n is the number of years from now.

- a) Determine the population of the town in 10 years.
- b) Determine the number of years until the population doubles.
- C Use this equation (or another method) to determine the number of years ago that the population was 8000. Answer to the nearest year.
- d) What are the domain and range of the function?

c)
$$800 = 12(1092)_{U}$$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 261-262 # 1 – 8

Today's Homework Practice includes:

pp. 251-253 #(1,2)cd, 4c, 5cd, 10 [12 – 14] (Optional Wkst 4.6 Extra Practice)

Tomorrow's Review: pp. 267-269 #(1 – 17)ace