4.10.1 Sinusoidal Swing Lab

Hypotheses: **answer the	se right now**	
1. The shorter the pen	dulum, the	the period.
•	longer / sh	norter
The greater the disp	placement from rest, the	the amplitude.
,	•	greater / smaller

Analysis (to be completed when 4.10.2 is complete) **Don't forget to answer these**

N.B.

Calculations (You must confirm your coordinates with your teacher <u>each</u> time, <u>BEFORE</u> doing the analysis.)

NOTE: Round each $\left(x_{\!_{1}},y_{\!_{1}}\right)$ to $\underline{\mathbf{3}}$ decimals; i.e. (2.652, 0.514)

Reminders:

(You must confirm your coordinates with your teacher each time, BEFORE doing the analysis.)

Round each (x_1, y_1) to <u>3</u> decimals; i.e. (2.652, 0.514)

Basic Set for each "Swing"

Complete the "Example (with integers)" on next slide before revealing formulae.

$$a = \frac{y_1 - y_2}{2} \qquad k = \frac{360^{\circ}}{x_3 - x_1} \qquad d = x_1 \qquad c = \frac{y_1 + y_2}{2}$$
You may use y_3 instead of y_1

$$y = 4\cos(60(x-3)) + 5$$
is an equation for the graph above.