Date:		

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) recognize the characteristics of geometric sequences.
- b) write the general term.

Last day's work: pp. 424-425 #1 - 13, 15, 16

26 7cd6 13a

- p. 424
- 2. State the general term and the recursive formula for each arithmetic sequence.
 - 28, 42, 56, ...

= 49

- c) -1, -111, -221, ...

1) 28, 42, 56, ...

$$t_1 = 53$$
 $t_2 = 49$
 $a = 53$
 $t_3 = 49$
 $d = -9$
 $t_4 = 4(n-1)d$
 $t_5 = 53 + (n-1)(-9)$
 $t_7 = 53 - 90 + 9$
 $t_7 = -90 + 57$
 $t_7 = -8 + 57$

$$a=53 tn = tn-1+d, t_1=53$$

$$d=-4 = tn-1+(-4)$$

$$= a+(n-1)d = -4+tn-1 n=2$$

$$= 53+(n-1)(-4)$$

$$= 53-4n+4 = -4+t_2-1$$

$$= -4+t_3$$

$$= -4+5$$

$$= -4+5$$

p. 424

- 7. i) Determine whether each recursive formula defines an arithmetic sequence, where $n \in \mathbb{N}$ and n > 1.
 - If the sequence is arithmetic, state the first five terms and the common difference.

a)
$$t_1 = 13, t_n = 14 + t_{n-1}$$

c)
$$t_1 = 4, t_2 = t_{22} + n - 1$$

b)
$$t_1 = 5, t_2 = 3t_{22-1}$$

d)
$$t_1 = 1, t_2 = 2t_{2-1} - n + 2$$

a)
$$t_1 = 13, t_n = 14 + t_{n-1}$$
b) $t_1 = 5, t_n = 3t_{n-1}$
d) $t_1 = 4, t_n = t_{n-1} + n - 1$
d) $t_1 = 1, t_n = 2t_{n-1} - n + 2$
b) $t_2 = 3t_{2-1}$
 $t_3 = t_1 + 2 - 1$
 $t_4 = t_1 + 2 - 1$
 $t_5 = t_4 + 3 - 1$
 $t_7 = t_7 + 3 - 1$
 $t_8 = t_1 + 2 - 1$
 $t_8 = t_$

p. 425

13. Determine the number of terms in each arithmetic sequence.

a) 7, 9, 11, 13, ..., 63

b) -20, -25, -30, -35, ..., -205

c) 31, 27, 23, 19, ..., -25

d) 9, 16, 23, 30, ..., 100

e) $-33, -26, -19, -12, \dots, 86$

f) 28, 19, 10, 1, ..., -44

a seq. $\xi_{n} = a + (n-i)d$ a = 7 = 7 + (n-i)(2) d = 2 = 7 + 2n - 2 n = ? $\xi_{n} = 2n + 5$ 63 = 2n + 5 63 - 5 = 2n 58 = 2n 63 = 2n63 = 2n

: there are 29 terms in the sequence.

Geometric Sequences

Date: May 28/18

Geometric Sequence:

A sequence that has a common **ratio** between the terms. (ie. you multiply by some number to move from one term to the next).

Ex.1 Consider the following sequence: 2, 6, 18, 54, ...In a geometric sequence, the first term is a and the common ratio is rEx.1 Consider the following sequence:

the terms are a, ar, ar^2 , ar^3 , ...

often only 3 terms given

The general term is $t_n = ar^{n-1}$

The recursive formula is $t_1 = a$, $t_n = rt_{n-1}$, n > 1

a) What is the 11th term?

 t_{11} =118 098

9.5eg:
$$\alpha = 2 \quad r = 3 \quad n = 11$$

$$t_{n} = \alpha r^{n-1}$$

$$t_{11} = (a)(3)^{10}$$

$$= 2(3)^{10}$$

$$= 118.098$$

The fifth term of a geometric sequence is 48, and the 13th term is 12288. Determine the first 4 terms.

g-sex. En= arh-1

$$a = 3, r = 2$$

 $t_1 = 3, t_2 = 6, t_3 = 12, t_4 = 24$

 $48 = ar^{5-1}$ t_{13} : $12288 = ar^{12}$

 $\frac{\xi_{3}}{\xi_{5}} = \frac{12388}{48} = \frac{\alpha r}{\alpha r}$ $\frac{\lambda t_{7}}{48} = \frac{\lambda r}{\alpha r}$ $\frac{\lambda t_{7}}{4$

3,6,12,24

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 424-425 #1 - 13, 15, 16

Study for the Unit 6 Summative!

Today's Homework Practice includes: