Today's Learning Goal(s):

By the end of the class, I will be able to:

a) calculate the sum of the terms of an arithmetic series.

7.5 Arithmetic Series

Date: _____

Recall: An arithmetic sequence is a list of numbers with a

An Arithmetic Series is the sum of the terms of an arithmetic sequence.

Sequence: 3, 5, 7, 9, ...

Series: 3 + 5 + 7 + 9 + ...

Karl Friedrich Gauss (1777-1855)

Ex.1 Add the following:

$$1 + 2 + 3 + 4 + \dots + 97 + 98 + 99 + 100$$

- 4
- 56
 - - वि

or the sum of the first merry

♦ Note: From Gauss, the sum of the first*n* numbers: $S_i = n(n+1)$

In general:

3

$$S_n = a + a+d + a+2d + ... + + + +$$

The Arithmetic Series Formula:

$$S_n = \frac{n}{2}[2a + (n-1)d]$$
 or $S_n = \frac{n}{2}[t_1 + t_n]$

where n is the term's position number,

$$a=t_1$$
,

d is the common difference, and

$$t_n = last term$$

Ex.2 Find S_{50} for $8 + 11 + 14 + ... + t_n$

Ex.3 Find the sum of: -12 - 7 - 2 + 3 + ... + 138