IVICTOIVII

пигон пенункь оесониагу

EXAM REVIEW 4

CHAPTER 4: Quadratic Models: Standard & Factored Forms

- 1. Write the function $f(x) = 2(x+3)^2 2$ in standard form.
- 2. For the function $f(x) = -(x-4)^2 + 1$, complete the table:

Vertex	
Axis of Symmetry	
Max/Min Value	
Domain	
Range	

3.

Determine the equation of the parabola .

4. Write each function in vertex form and state the vertex.

(a)
$$f(x) = -x^2 + 6x + 7$$

(b)
$$g(x) = 2x^2 - 3x + 3.5$$

- 5. The cost, C(n), of operating a cement-mixing truck is modeled by the function $C(n) = 2.2n^2 66n + 700$, where n is the number of minutes the truck is running. What is the minimum cost of operating the truck? Show your work.
- 6. Solve using the quadratic formula. State your answers correct to 2 decimal places.

(a)
$$8x^2 - 6x + 1 = 0$$

(b)
$$x^2 + 3x = 14$$

7. A theatre company's profit can be modeled by the function $P(x) = -60x^2 + 700x - 1000$ where x is the price of a ticket in dollars. What is the break-even price of the tickets?

4. Write each function in vertex form and state the vertex.

(b)
$$g(x) = 2x^{2} - 3x + 3.5$$
 $f(x) = ax^{2} + bx + c$
 $= 2(x^{2} - 3x) + 3.5$ Verlex $f(x) = a(x - h)^{2} + k$
 $= 2(x^{2} - 3x) + 3.5$ Verlex $f(x) = a(x - h)^{2} + k$
 $= 2(x^{2} - 3x) + 3.5$ for $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$
 $= -(x^{2} - 6x) + 7$ of $f(x) = a(x - h)^{2} + k$

IVIUT SIVII ENAIVI REVIEVV - CHAPIEL 4

rage z

- A model rocket is launched into the air. Its height, h(t), in metres after t seconds is $h(t) = -5t^2 + 40t + 2$.
 - (a) When is the rocket at a height of 62 m (correct to 2 decimal places)?
 - (b) What is the height of the rocket after 6 seconds?
 - (c) What is the maximum height of the rocket?
- Without solving, determine the number of solutions of each equation. Show your work for full marks.

(a)
$$x^2 - 5x + 9 = 0$$

(b)
$$3x^2 - 5x - 9 = 0$$

(c)
$$16x^2 - 8x + 1 = 0$$

- 10. For the function $f(x) = kx^2 + 8x + 5$, what value(s) of k will have two distinct solutions.
- 11. The function $f(x) = x^2 + kx + k + 8$ touches the x-axis once. What value(s) could k be?

- 8. A model rocket is launched into the air. Its height, h(t), in metres after t seconds is $h(t) = -5t^2 + 40t + 2$.
 - (a) When is the rocket at a height of 62 m (correct to 2 decimal places)?
 - (b) What is the height of the rocket after 6 seconds?
 - (c) What is the maximum height of the rocket?

b) let
$$t=6$$
 $h(t)=-5(6)^2+40(6)+2$
 $h(t)=-5t^2+40t+2$
 $h(t)=-$

