Identify which graph best represents each function.



**b)** 
$$g(x) = 10^x$$

c) 
$$h(x) = \left(\frac{3}{4}\right)^x$$

d) 
$$k(x) = \left(\frac{1}{4}\right)^x$$



- 2. a) Graph  $y = 10^x$  and  $y = 2^x$  on the same axes.
  - b) Use your graph in part a to sketch the graph of  $y = 5^x$ .
  - c) Use a graphing calculator to confirm your sketch in part b.
- 5. a) Suppose a > 0. Visualize what the graph of  $y = a^x$  looks like as abecomes larger and larger, and as a becomes smaller and smaller.
  - b) Predict what the graphs of the equations in each list would look like.

i) 
$$y = 2^x$$
,  $y = 3^x$ ,  $y = 4^x$ , ...,  $y = 100^x$ 

ii) 
$$y = \left(\frac{1}{2}\right)^x$$
,  $y = \left(\frac{1}{3}\right)^x$ ,  $y = \left(\frac{1}{4}\right)^x$ , ...,  $y = \left(\frac{1}{100}\right)^x$ 

- c) Use a graphing calculator to check your predictions in part b.
- 6. For each list, predict what the graphs of the equations would look like. Check your predictions.

a) 
$$y = 1 \times 2^x$$

$$y = 2 \times 2^x$$

$$y = 4 \times 2^x$$

$$y = 8 \times 2^x$$

$$y = 2^{10} \times 2^x$$

b) 
$$y = 1 \times 2^x$$

$$y = \frac{1}{2} \times 2^x$$

$$y = \frac{1}{4} \times 2^x$$

$$y = \frac{1}{8} \times 2^x$$

$$y = \frac{1}{2^{10}} \times 2^x$$

c) 
$$3.32$$
  
a)  $1) 5^{1.431}$   
b)  $10^x = 5^{1.431x}, 2^x$   
a)  $y = 2^x$ 

a) About 0.301; explanations may vary

- 12. a) Graph the function  $y = 3^x$ .
  - b) Describe how the graph in part a will change for each function below. Use a graphing calculator to confirm your description.

i) 
$$y = 2(3)^x$$

ii) 
$$y = 0.5(3)^x$$

iii) 
$$y = -3^x$$

iv) 
$$y = 3^x + 2$$

v) 
$$y = 3^x - 1$$

vi) 
$$y = 2(3)^x + 1$$

c) Describe the graphical implications of changes in the parameters a and cin the equation  $y = a(3)^x + c$ 

a) Use the results of exercise 2. Sketch the graphs of  $y = \left(\frac{1}{2}\right)^x$ ,  $y = \left(\frac{1}{5}\right)$ 

Use a graphing calculator to confirm your sketch in part b

 $\left(\frac{1}{10}\right)$ 

on the same axes

The graph of T =

 $y = 0.85^{\circ}$  after a vertical expansion by a factor of 79

a vertical translation 20 units up

 $79 \times 0.85' + 20$  is the image of