Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) activate prior knowledge of exponential functions.
- b) determine through investigation with graphing software (desmos) the impact of changing the base on the graph of an exponential function.
- c) determine through investigation with graphing software, the impact of changing the sign of the exponent on the graph of an exponential function.

Unit 1: Exponential Functions

1.1.1 Do You Remember When?

Date: Sept. 5/18

Anticipation Guide

Instructions:

- Compare your choice and explanation with a partner.
- Revisit your choices at the end of the task.
- Compare the choices that you would make *after* the task with the choices that you made before the task.

Before		Etatament		After	
Agree	Disagree	NoT Statement 7 Anctim	Agree	Disagree	
10	2	1. All of the following are functions. i. $x = y^2 \times $ ii. $y = 2x^2 - 5 \checkmark$ iii. $y = \frac{x}{4} + 7 \checkmark $ iv. $y = 3^x \checkmark$ v. $2x + 3y - 5 = 0 \checkmark$	(3		
\bigcirc	19	2. The base of $y = 2^x$ is x.	0	13	
4	8	3. Audrey is paid \$10/hour. The growth of her earnings over the week is an example of exponential growth.	0	13 /	
0	12	4. $y = 3^x$ is the same as $y = x^3$.	0	13	
	10	5. The area, y , of a square floor with one side measuring x can be modelled by the equation $y = 2^x$ $\Rightarrow y = x^2$	0	13	
7		6. If $x = 0$ in the relation $y = 5^x$, then $y = 0$.		13	
6	6	7. For the function on the grid, the x-intercept is -3 and the y-intercept is 1.	3		
9	2	8. $y = \left(\frac{1}{5}\right)^x$ is an exponential function.	130	D	
10	9	9. The domain of $y = 2^x$ is $\{x \in R\}$	13	0	
5	7	10. The range of $y = 10^x$ is $\{y \in R / y > 0\}$.	3/	()	

1.1.2 The Graphs of Exponential Functions

Date: 5ept-5/18

Step 1:

Using desmos, adjust to the following window settings.

Step 2:

Each of the equations is in the form: $y = b^x$ For each part of the investigation graph the given equations on the same axes.

Sketch the graphs on the grid provided.

Complete the chart that follows.

Part 1:

$$y = 2^x$$

$$v = 4^x$$

$$y = 10^{x}$$

 $y = 10^{x}$ y-intercept is y-intercept is y-intercept is x-intercept is hone x-intercept is nohe x-intercept is function is increasing. function is increasing, function is increasing decreasing or neither (circle one) decreasing or neither (circle one) decreasing or neither (circle one) Domain is: $\{x \in R\}$ Domain is: $\{x \in R\}$ Domain is: $\{x \in R\}$ Range is: $\{ y \in R / y > 0 \}$ Range is: $\{ y \in R / y > 0 \}$ Range is: $\{y \in R \mid y > 0\}$

- 1. Describe what these graphs have in common.
 - **Same** y-intercept (zero exponent rule)
 - # all are increasing (up to the right)
 - y>0, y=0 (the x-axis) is a horizontal asymptote
- 2. Describe the impact of changing the base on the graph of an exponential function.
 - As "b" increases, the function increases more quickly

(Consider putting brackets around the fractional bases)

$y = \frac{1}{2}^{x}$	$y = \frac{1}{4}^{x}$	$y = \frac{1}{10}^{x}$	
y-intercept is	y-intercept is	y-intercept is \	
x-intercept is NONE	x-intercept is NONE	x-intercept is NONE	
function is increasing, decreasing or neither (circle one)	function is increasing, decreasing or neither (circle one)	function is increasing, decreasing or neither (circle one)	
Domain is: $\{x \in R\}$	Domain is: $\{x \in R\}$	Domain is: $\{x \in R\}$	
Range is: $\{y \in R \mid y > 0\}$	Range is: $\{y \in R / y > 0\}$	Range is: $\{y \in R \mid y > 0\}$	

- 3. Describe what these graphs have in common.
 - Same y-intercept (zero exponent rule)
 - # all are decreasing (down to the right)
- 4. Describe the impact of changing the base on the graph of an exponential function.
 - \clubsuit When 0 < b < 1, decreasing the base has the function decrease more quickly

Part 3:

$$y=2^{-x}$$

$$y = 2^{x}$$
 $y = 2^{-x}$ $y = 4^{-x}$ $y = 10^{-x}$

$$v = 10^{-3}$$

$y=2^{-x}$	$y = 4^{-x}$	$y = 10^{-x}$	
y-intercept is \\\ x-intercept is \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	y-intercept is \\x\circ\text{VONE}	y-intercept is \ x-intercept is \NONE	
function is increasing, decreasing or neither (circle one)	function is increasing, decreasing or neither (circle one)	function is increasing, decreasing or neither (circle one)	
Domain is: $\{x \in R\}$	Domain is: $\{x \in R\}$	Domain is: $\{x \in R\}$	
Range is: $\{y \in R \mid y > 0\}$	Range is: $\{y \in R \mid y > 0\}$	Range is: $\{y \in R / y > 0\}$	

- 5. Describe what these graphs have in common with the graphs in part 2.
 - They represent the same functions. (due to the negative exponent rule) $y = 2^{-x}$

$$=\left(\frac{1}{2}\right)^x$$

- 6. Describe the impact of changing the sign of the exponent on the graph of an exponential function.
 - Changing the sign of the exponent changes an exponential function from increasing (growth) to decreasing (decay), or vice versa.

1.1.3 Matching Activity

Date:

Match each graph with an equation that best represents the relationship.

For each graph, state the x-intercept, y-intercept, domain, range, and whether the graph is increasing, decreasing or neither.

Equations: i) $y = 3^{-x}$ ii) $y = \left(\frac{1}{4}\right)^{-x}$

i)
$$y = 3^{-x}$$

ii)
$$y = \left(\frac{1}{4}\right)^x$$

iii)
$$y = 5^{-x}$$

iii)
$$y = 5^{-x}$$
 iv) $y = 2.4^x$ v) $y = 5.5^x$

v)
$$y = 5.5^{\circ}$$

vi)
$$y = 3.4^x$$

y-intercept is

x-intercept is

function is increasing, decreasing or neither (circle one)

Domain is:

Range is:

b) Equation:

y-intercept is

x-intercept is

function is increasing, decreasing or neither (circle one)

Domain is:

Range is:

c) Equation:

y-intercept is

x-intercept is

function is increasing, decreasing or neither (circle one)

Domain is:

Range is:

y-intercept is

x-intercept is

function is increasing, decreasing

or neither (circle one)

Domain is: Range is:

f) Equation:

y-intercept is

x-intercept is

function is increasing, decreasing or neither (circle one)

Domain is:

Range is:

Domain is:

Range is: