Are there any questions from the review?

p. 61 # 10, 11a, 12, 13, 16, 17 +0

#17a) the function should be:

$$f(x) = \begin{cases} 30, & \text{if } 0 \le x \le 200\\ 24 + 0.03x, & \text{if } x > 200 \end{cases}$$

Practice Test p. 62 # 1-10

Errors:

#7a) should be (-2, 17) #9a) should be: \$11500

$$T(x) = \begin{cases} 0.05x & \text{if } 0 \le x \le 50000\\ 0.12x - 3500 & \text{if } x > 50000 \end{cases}$$

#10c) There should be a square bracket beside one of the zeros #10d) The range should be:

$$\{y \in \Re \mid 1 < y < 2, y \ge 3\}$$

p. 61 12. Graph each function and its inverse relation on the same set of axes. Determine whether the inverse relation is a function.

a) $f(x) = x^2 - 4$

b) $g(x) = 2^x$

- p. 61 17. A telephone company charges \$30 a month and gives the customer 200 free call minutes. After the 200 min, the company charges \$0.03 a minute.
 - a) Write the function using function notation.
 - b) Find the cost for talking 350 min in a month.
 - c) Find the cost for talking 180 min in a month.

a)
$$f(x) = \begin{cases} 30 & [0,200] \\ 0.03x + 34 & (200,\infty) \end{cases}$$

after 200 min,

$$f(x) = 30 + 0.03(x - 200)$$

$$= 30 + 0.03x - 6$$

$$= 0.03x + 24$$

- p. 62 9. A certain tax policy states that the first \$50 000 of income is taxed at 5% and any income above \$50 000 is taxed at 12%.
 - a) Calculate the tax on \$125,000. = 50,600 + 75,600
 - b) Write a function that models the tax policy.

b) Write a function that models the tax policy.
$$f(x) = \begin{cases} 0.05 \times (50000) + 0.12(15000) \\ 0.12 \times 3500 (50000), \end{cases}$$

$$f(50000) = 0.05(50000)$$

= 2500

$$f(x) = 2500 + 0.12(x - 50000)$$

$$= 2500 + 0.12(x - 50000)$$

$$= 0.12x - 3500$$

2.1 Determining Average Rate of Change

™

Math Learning Target:

"I can calculate the average rate of change, and I can interpret the result."

Let the independent variable be x and let the dependent variable be y.

The <u>average rate of change</u>, in any relation, is the change in quantity of the dependent variable divided by the corresponding change in amount of the independent variable.

If the relation is the function y = f(x), over an interval $x_1 \le x \le x_2$, the average rate of change is:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$= \underbrace{y_3 - y_1}_{\times - \times_1}$$

$$= \underbrace{y_3 - y_1}_{\times - \times_1}$$

a line connecting two (or more) unique points on the graph of a function. The average rate of change (AROC) is the slope of the secant line.

Read and understand p. 75 "**Need to Know**". Complete: pp. 76-78 #2, 6, 7, 10, 12, 13

Ex. 1:

A rocket is shot vertically off a cliff. The height of the rocket, in *m*, is given by $h(t) = -5t^2 + 60t + 220$, where t is in seconds.

a) Graph this relation using the grid.

You may use the table below to assist.

· complete the square to find the vertex · factor (or use QRF) to find the zeros

Xhe could:

$$\chi = \frac{-b}{2a}$$
 finds the AGS.

t	0	2	4	6	8	10	12	14
h	220	320	380	400	380	320	220	80

b) Find the average rate of change over 2 $\leq t \leq 4$.

Aroc =
$$\frac{4h}{4}$$
 = $\frac{380-320}{2}$ = $\frac{60}{3}$ $\frac{m}{5}$ = $\frac{60}{4}$ $\frac{m}{4}$ = $\frac{h(4)-h(4)}{4-2}$ = $\frac{60}{3}$ $\frac{m}{5}$

Interpretation:

On average, between 2 and 4 seconds, the rocket's height increased at a rate of 30 m per 1 second.

c) Find the average rate of change over 12 $\leq t \leq$ 14 and $t \in [4,8]$.

c) Find the average rate
$$A_{ROC} = \frac{4h}{3t}$$

$$= \frac{h(14) - h(12)}{14 - 12}$$

$$= 80 - 320$$

$$= -\frac{140}{2}$$

$$= -70$$

$$A_{ROC} = \frac{2h}{8t}$$

$$= \frac{h(8) - h(4)}{8 - 4}$$

$$= \frac{380 - 380}{4}$$

$$= 0 \text{ m/s}$$

On average, between 12 and 14 seconds, the rocket is moving down (it's height decreased) at 70 m per 1 second. in the 4 seconds from 4 to 8 seconds.

On average, the rocket has not changed height values