Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Convert between the exponential and logarithmic forms of an equation
- b) Solve an exponential equation by "taking the log of both sides".

NOTE: There is no handout for today's lesson.

If you did not print the pages in advance as advised,
then copy these examples onto lined paper in your notebook.

Express 8 as a power of
$$\lambda$$
.
 $\lambda^{x} = 8$
 $\lambda^{x} = 3$
 $\lambda^{x} = 8$

p. 344 **10. Express:**

a) 7 as a power of 3

$$3^{k} = 7$$
 $\log_{3}7 = x$
 $x = \frac{\log 7}{\log 3}$
 $= 1.771$
 $= 1.771$

b) 5 as a power of 2

$$2^{4} = 5$$

$$\log_{2} 5 = 7$$

$$y = \frac{\log 5}{\log 2}$$

$$= 2.3219$$

$$= 3.322$$

1.8.0 Warm-up

1. Complete the chart:

Exponential Equation	Logarithmic Equation		
2 ⁵ = 32	log ₂ 32=5		
3 ⁴ = 81	Rog 381=4		
$10^3 = 1000$	log10 (000=3		
2 ^x = 256	log_2256=x		
26=64	log ₂ 64 = 6		
27=8	log ₂ 8 = y		

1.8.0 Warm-up (cont'd)

- 2. Solve for x. (Round to 3 decimal places)
- a) $2^x = 18$

$$\log_2 18 = 2$$

$$X = \frac{\log 18}{\log 2}$$

b)
$$3^x = 25$$

$$209325=x$$
 $x=20925$
 1093
 $=2.9299$
 $=2.930$

2.9299

1.8.1: Solving Exponential Equations Using Logarithms

Date: Sept.17/18

Laws of Logarithms for Powers $\log_a x^n = n \log_a x$ [x > 0,a > 0,a \neq 1]

Ex. 1
$$\log 8$$
 and $\log 8$
= 0.903 = $\log 2^3$
= $3\log 2$
= $3(0.301)$
= 0.903

New: To solve an exponential equation, take the logarithm of each side.

Ex. 2 Solve each equation to 3 decimal places.

a)
$$2^x = 55$$

Method 1 (from last day)

$$log_{2}55 = x$$
 $log_{3}5 = x$
 $log_{3}5 = x$
 $log_{3}5 = x$
 $x = 5.7813$
 $= 5.781$

Method 2 (New: Take the "log" of both sides)

$$\log(2^{\times}) = \log(55)$$

$$\times \log 2 = \log 55$$

$$\log 2 = \log 55$$

$$\log 2 = \log 55$$

$$\log 3 = \log 5$$

$$\log 5$$

$$0 = 5.781$$

b)	5 ^{<i>x</i>}	=2	20		
ļ	Pog	5	X=X	209	20
				_	920
X	<u> </u>	. L -	2092	95	
	•		86	_	
			861		

$$\begin{array}{c}
c) \ 3^{2x+1} = 14 \\
\log 3^{2x+1} = \log 14 \\
2x+1 \log 3 = \log 14 \\
\hline
\log 3
\end{array}$$

$$2x+1 = \frac{\log 14}{\log 3}$$

$$2x = \frac{\log 14}{\log 3}$$

$$x = \frac{\log 14}{\log 3}$$

$$= 0.7010$$

(Be careful of Bad Form)

Bad Form

 $2x + 1\log 3 = \log 14$ $2x = \log 14 - 1\log 3$

ANeed Brackets

1.9021

0.701

Law of Logarithms for Multiplication

Law of Logarithms for Division

$$[x>0, y>0, a>0, a\neq 1]$$

$$[x > 0, y > 0, a > 0, a \neq 1]$$

$$\log_{a} xy = \log_{a} x + \log_{a} y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Ex. 3 [from 1.4.1 Ex. 2b] Suppose you invest \$1000 at 8% per year, compounded quarterly.

b) Estimate how many years it takes for the investment to grow to \$2800.

$$2800 = 1000 (1.02)^{4x}$$

Method 1 (take the log of both sides immediately)

Method 2 (Isolate the "exponential" first)

p.344 #9 and Worksheet 1.8.2

1.8.0-1.8.2 Solving Exponential Equations Using Logarithms (Fall 2018)-f18 Sept. 17, 2018

1.8.2: Logarithmic Functions Worksheet

Date: _____

- 1. Evaluate each of the following.
- a) log 100
- b) log 0.01
- c) log 100 000
- 2. Use your calculator to evaluate each of the following to three decimal places.
- a) log 25

- b) log 0.004
- c) log 636

- 3. Write in exponential form.

- a) $\log 10\ 000 = 4$ b) $\log 10 = 1$ c) $\log 0.000\ 1 = -4$

 - d) $\log_4 64 = 3$ e) $\log_6 \frac{1}{216} = -3$ f) $\log_3 2187 = 7$
- 4. Write each of the following in logarithmic form.
- a) $3^4 = 81$
- b) $4^{-2} = \frac{1}{16}$ c) $4^{\frac{-3}{2}} = \frac{1}{9}$
- 5. Solve for x (round to three decimal places where necessary).
- a) $\log x = -3$
- b) $\log_x 49 = 2$ c) $5^x = 8$

d)
$$3^{x+2} = 5$$

e)
$$\log_4 \frac{1}{64} = x$$

Answers

- 4a) $\log_3 81 = 4$ b) $\log_4 \frac{1}{16} = -2$ c) $\log_4 \frac{1}{8} = \frac{-3}{2}$