Today

pp.116-117 #2, 3, 5*an estimate is required only, 6a*find the quadratic equation first then use the preceding interval method, 8, 9, 10, 11ab*use first principles, 13

p.118 (45 minutes max) #1,2,3,4a* use first principles

Optional Extra Practice Worksheet in Google Classroom

Recent Homework

Thurs. Sept. 20 p.86 #2bc, 4a

Use the "FIRST PRINCIPLES" FOR ALL RATE OF CHANGE CALCS

pp.86-89 #4c, 5, 10* do not approximate π +

Challenge: For the function $y = \frac{1}{x}$ find the exact rate of change at x = 2.

Mon. Sept. 24

* in #2, the answer in the back has a small error. Do you know what it is? Also, the answer for #9 in the back has some mistakes.

p.86 #10 (Last year's version on next slide)

- 10. To make a snow person, snow is being rolled into the shape of a
- sphere. The volume of a sphere is given by the function $V(r) = \frac{4}{3}\pi r^3$, where r is the radius in centimetres. Use two different methods to estimate the instantaneous rate of change in the volume of the snowball with respect to the radius when r = 5 cm.

$$iroc = Mtangent$$

$$= \frac{V(r+h) - V(r)}{h} + \frac{1}{200}h \Rightarrow 0$$

$$= \frac{4}{3}\pi(5+h)^3 - \frac{4}{3}\pi(5)^3, h \Rightarrow 0$$

$$= \frac{4}{3}\pi(5+h)^3 + \frac{1}{3}h +$$

 $(5+h)^{3} \sqrt{(33)}$ $25^{3}+36)^{3}h+3(5)h^{2}+h^{3}$ $=(25+75h+(5h^{2}+h^{3})^{3}+h^{3}+h^{3}$

p.86 #10

This version of the solution does not common factor the $4/3 \pi$ first.

10. To make a snow person, snow is being rolled into the shape of a sphere. The volume of a sphere is given by the function $V(r) = \frac{4}{3}\pi r^3$, where r is the radius in centimetres. Use two different methods to estimate the instantaneous rate of change in the volume of the snowball with respect to the radius when r = 5 cm.

if oc =
$$\frac{f(x+h)-f(x)}{h}$$
, $h \to 0$
= $\frac{f(x+h)-f(x)}{h}$, $h \to 0$

2.2 2 Challenge Question:

For the function $y = \frac{1}{x}$ find the exact rate of change at x = 2.

iroc=
$$\frac{f(x+h)-f(x)}{h}$$
, as $h > 0$

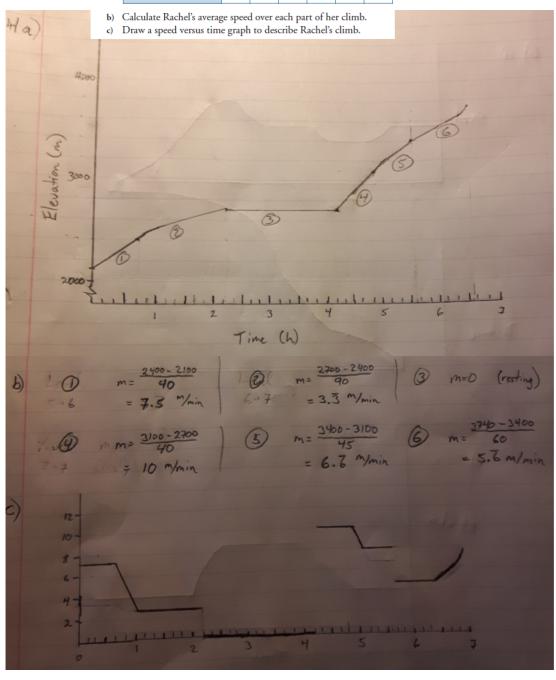
$$= \frac{f(x+h)-f(x)}{h}$$
, as $h > 0$

$$= \frac{1}{(x+h)} - \frac{1}{2}$$
, $h > 0$

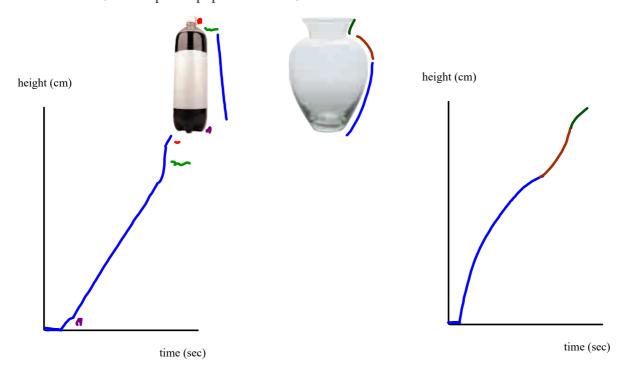
$$= \frac{1}{(x+h)$$

From Optional Extra Practice Worksheet in Google Classroom

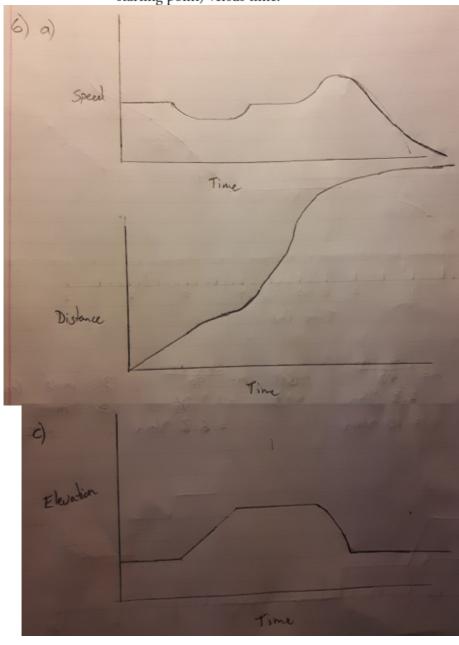
PRACTICE: Slope of the Tangent - f(a + h)


1. Determine a simplified expression for the slope of the tangent for each of the following.

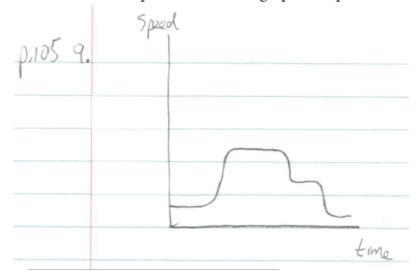
a)
$$f(x) = 2x^{2} + x + 1$$
 b) $f(x) = -x^{2} + 10$ c) $f(x) = x^{3} - 4$
 $M_{\text{targent}} = \frac{f(x+h) - f(x)}{h}$, as $h > 0$
 $= \frac{2(x+h)^{2} + (x+h) + 1 - 2x^{2} - x - 1}{h}$, $h > 0$
 $= \frac{2x^{2} + 4xh + h^{2} + x + h + 1 - 2x^{2} - x - 1}{h}$, $h > 0$
 $= \frac{4x + 2h + 1}{h}$, $h > 0$
 $= \frac{4x + 2h + 1}{h}$, $h > 0$
 $= \frac{4x + 2h + 1}{h}$, $h > 0$
 $= \frac{4x + 2h + 1}{h}$, $h > 0$
 $= \frac{4x + 2h + 1}{h}$, $h > 0$

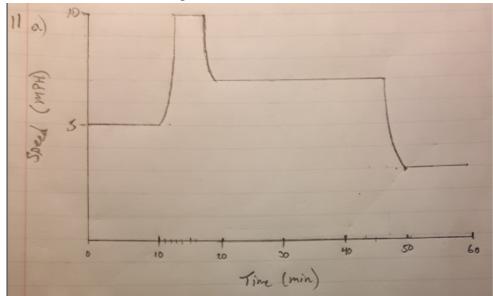

p.104 #4

- Rachel climbed Mt. Fuji while in Japan. There are 10 levels to the mountain. She was able to drive to Level 5, where she began her climb.
 - She walked at a constant rate for 40 min from Level 5 to Level 6.
 - She slowed slightly but then continued at a constant rate for a total of 90 min from Level 6 to Level 7.
 - She decided to eat and rest there, which took approximately 2 h.
 - From Level 7 to Level 8, a 40 min trip, she travelled at a constant rate.
 - Continuing on to Level 9, a 45 min trip, she decreased slightly to a new constant rate.
 - During most of the 1 h she took to reach Level 10, the top of Mt. Fuji, she maintained a constant rate. As she neared the top, however, she accelerated.
 - using the information given and the following table, draw an elevation versus time graph to describe Rachel's climb.


Level	5	6	7	8	9	10
Elevation (m)	2100	2400	2700	3100	3400	3740

- p.104 #5 5. The containers shown are being filled with water at a constant rate.
 - Draw a graph of the water level versus time for each container.
 - a) a 2 L plastic pop bottle
- b) a vase


- p.104 #6 6. John is riding a bicycle at a constant cruising speed along a flat road. He slows down as he climbs a hill. At the top of the hill, he speeds up, back to his constant cruising speed on a flat road. He then accelerates down the hill. He comes to another hill and coasts to a stop as he starts to climb.
 - a) Sketch a possible graph to show John's speed versus time, and another graph to show his distance travelled versus time.
 - b) Sketch a possible graph of John's elevation (in relation to his starting point) versus time.


p.105 #9

9. A jockey is warming up a horse. Whenever the jockey has the horse accelerate or decelerate, she does so at a nonconstant rate—at first slowly and then more quickly. The jockey begins by having the horse trot around the track at a constant rate. She then increases the rate to a canter and allows the horse to canter at a constant rate for several laps. Next, she slowly begins to decrease the speed of the horse to a trot and then to a walk. To finish, the jockey walks the horse around the track once. Draw a speed versus time graph to represent this situation.

- p.106 11. A cross-country runner is training for a marathon. His training program requires him to run at different speeds for different lengths of time. His program also requires him to accelerate and decelerate at a constant rate. Today he begins by jogging for 10 min at a rate of 5 miles per hour. He then spends 1 min accelerating to a rate of 10 miles per hour. He stays at this rate for 5 min. He then decelerates for 1 min to a rate of 7 miles per hour. He stays at this rate for 30 min. Finally, to cool down, he decelerates for 2 min to a rate of 3 miles per hour. He stays at this rate for a final 10 min and then stops.
 - a) Make a speed versus time graph to represent this situation.
 - b) What is the instantaneous rate of change in the runner's speed at 10.5 min?
 - c) Calculate the runner's average rate at which he changed speeds from minute 11 to minute 49.
 - d) Explain why your answer for part c) does not accurately represent the runner's training schedule from minute 11 to minute 49.

