3.1 Exploring Polynomial Functions

Math Learning Target:

"I can identify a polynomial function. I can classify polynomial functions."

With a partner, complete: "**EXPLORE** the Math" pp. 124-126, but only A, B, C, D, E, F**, G***see below, K, L.

All written work is to be written on a new piece of paper in your notebook.

desmos will be used for questions that require a "graphing calculator". (Remember to sign in, name and then save your work, i.e. MHF 3.1 Exploring)

** Recall: finite differences are first differences, second differences, and so on...

The final answers for F are included the next page of this document to save you work,

BUT YOU MUST UNDERSTAND HOW THEY WERE FOUND!!

***For question G use:

- 1) $f(x) = x^3 + 2x^2 3x 2$
- 2) $f(x) = x^4 + 3x^3 + x^2 2x 2$
- 3) $f(x) = x^5 x^4 3x^3 + x^2 + x 2$

Now **READ** p. 126 "In Summary ".

Finally, complete pp. 127-128 # 1, 2, 3d, 5, 7, 8

A **polynomial expression** (or **polynomial**) is a series of terms (added/subtracted) where each term is the product of a constant and a power of x with exponents that are non-negative integers.

A **polynomial function** is of the form:

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x + a_0$, where a_0 , a_1 , a_2 etc... are real number constants, and n is a non-negative integer. Its finite differences eventually become constant.

The **degree** of a polynomial function will always be the value n as long as leading coefficient $a_n \neq 0$.

Study this answer for "F":

F.

f(x) = x	Δ_1
f(-3) = -3	4
f(-2) = -2	1
f(-1) = -1	1
f(0) = 0	1
	1
f(1) = 1	1
f(2) = 2	1
f(3) = 3	

Δ_1	Δ_2
-5	2
-3	2
-1	_
1	2
2	2
5	2
5	
	-5 -3 -1 1 3

$f(x)=x^3$	Δ_1	Δ_2	Δ_3
f(-3) = -27			
f(-2) = -8	19	-12	
	7		6
f(-1) = -1	4	-6	6
f(0) = 0	1	0	б
	1	0	6
f(1) = 1	7	б	6
f(2) = 8	100	12	
f(3) = 27	19		
I(3) - 2I			

$f(x)=x^4$	Δ_1	Δ_2	Δ_3	Δ_4
f(-3) = 81				
f(-2) = 16	-65	50		
. ,	-15		-36	
f(-1) = 1	-1	14	-12	24
f(0) = 0	-1	2		24
	1	44	12	
f(1) = 1	15	14	36	24
f(2) = 16		50	50	
	65		1	
f(3) = 81				

$f(x)=x^5$	Δ_1	Δ_2	Δ_3	Δ_4	Δ_5
f(-3) = -243	044				
f(-2) = -32	211	-180	1-0		
f(-1) = -1	31	-30	150	-120	
f(0) = 0	1	2	30	0	120
f(1) = 1	1	30	30	120	120
` '	31		150	120	
f(2) = 32	211	180			
f(3) = 243					

p. 127 7. Create equations for a linear, a quadratic, a cubic, and a quartic polynomial function that all share the same γ -intercept of 5.

y = 2x + 5 $y = x^{2} - 6x + 5$ $y = -4x^{4} - 6x^{3} + 2x^{2} + 5$ $y = -4x^{4} - 6x^{3} + 2x^{2} + 5$

Answers to Explore the Math

- **A.** The polynomial expressions all involve only the sum of constant multiples of non-negative integer powers of *x*.
- **B.** Some have negative or fractional powers of x. Others have an x in the denominator of a fraction. Still others have x's and y's, and one even involves a sine function.
- **C.** Answers may vary. A polynomial expression is an expression that is the sum of constant multiples of non-negative integer powers of *x*.

D.

Polynomial Function	Туре	Sketch of Graph	Description of Graph	Domain and Range	Existence of Asymptotes?
f(x) = x	linear	-8 -4 8 4 8 -4 -4 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	The graph is a line through (0, 0) at a 45° angle to the <i>x</i> -axis.	$D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}\}$	None
$f(x) = x^2$	quadratic	8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	The graph is a parabola through (0, 0) opening up.	$D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R} f(x) \ge 0\}$	None
$f(x) = x^3$	cubic	80 40 40 -40 -40 -80 -80	The graph increases from —∞ to ∞ and flattens out around the origin.	$D = \{x \in \mathbf{R}\}$ $R = \{f(x) \in \mathbf{R}\}$	None
$f(x) = x^4$	quartic	300- 200- 1004 -2 0 2 4	The graph looks like the graph of x^2 only much flatter near the origin.	$D = \{x \in \mathbb{R}\}$ $R = \{f(x) \in \mathbb{R} f(x) \ge 0\}$	None
$f(x) = x^5$	quintic	2000 - 1000 - 20	The graph looks like the graph of x^3 only much flatter near the origin.	$D = \{x \in \mathbb{R}\}$ $R = \{f(x) \in \mathbb{R}\}$	None

E. The linear, cubic, and quintic behave similarly and all have odd powers, while the quadratic and quartic behave similarly and have even powers.

F.

1
1
1
1
1
<u>'</u>
1

$f(x)=x^2$	Δ_1	Δ_2
f(-3) = 9		
f(-2) = 4	-5	2
f(-1) = 1	-3	2
f(0) = 0	-1	2
f(1) = 1	3	2
f(2) = 4	5	2
f(3) = 9	5	

$f(x)=x^3$	Δ_1	Δ_2	Δ_3
f(-3) = -27			
f(-2) = -8	19	-12	
	7		6
f(-1)=-1	4	-6	
f(0) = 0	1	0	6
	1	-	6
f(1) = 1		6	
f(2) = 8	/	12	О
	19		
f(3) = 27			

$f(x)=x^4$	Δ_1	Δ_2	Δ_3	Δ_{4}
f(-3) = 81				
f(-2) = 16	-65	50		
	-15		-36	
f(-1) = 1	_1	14	-12	24
f(0) = 0	-1	2		24
f(1) = 1	1	14	12	24
. ,	15		36	24
f(2) = 16	65	50		
f(3) = 81	03			

$f(x)=x^5$	Δ_1	Δ_2	Δ_3	Δ_{4}	Δ_5
f(-3) = -243	044				
f(-2) = -32	211	-180	1-0		
f(-1) = -1	31	-30	150	-120	
f(0) = 0	1	2	30	0	120
f(1) = 1	1	30	30	120	120
	31		150	120	
f(2) = 32	211	180			
f(3) = 243					

The number of finite differences to get down to a constant is determined by the degree of the polynomial. **G.** Answers may vary, but the number of finite differences needed to obtain a constant should be the same as the degree of the polynomial.

Answers to Reflecting

- **J.** There is a y or a f(x) present.
- **K.** Both are sums of constant multiples of non-negative integer powers of x.
- L. As the degree increases, the graph flattens out near the origin and becomes steeper away from the origin. The number of finite differences needed to obtain a constant increases with the degree.
- M.The definition of a polynomial function can now be "a function in which finite differences eventually become constant."