3.4 Transformations of Cubic and Quartic Functions

Math Learning Target:

"I can describe and perform transformations on the parent functions $y = x^3$ and $y = x^4$."

Recall: y=f(x) may be transformed to y=af[k(x-d)]+c

Last class we learned how to sketch polynomial functions in **factored form.** However, if the polynomial function is in the form $y=a[k(x-d)]^n+c$, where $a\neq 0$, $c\neq 0$, $k\neq 0$, then it should be graphed by identifying and applying the transformations of the polynomial function $f(x)=x^n$, where n is a nonnegative integer.

Today: Graphing $y=a[k(x-d)]^3+c$ and $y=a[k(x-d)]^4+c$

Ex.1

On the same plane, graph:

a)
$$y = x^3$$

b)
$$y = -(\frac{1}{2}x - 1)^3$$

Complete pp.155-158 #1, 2*, 3ab, 4bd, 5a, 6ab, 8**, 9af (for #9 see Ex. 2 on p.153), 10, 14

^{*2}e has an incorrect answer in the back: change "left" to "right"

^{*2}f has an incorrect answer: ...horizontal translation 35 units left...

^{**8} has an incorrect answer: it should be (-2, -8); (0, 0) then (2, 8)