Before we begin, are there any questions from last day's work? pp.217-218 1, 2c, 3d, 4b, 6, 7 SWYK 2.1 is first. # Today's Learning Goal(s): By the end of the class, I will be able to: a) use a quadratic model to solve a problem with and without technology. ## 2.8.1 Modeling using Quadratic Functions Date: 04.4/8 Sixteen metres of fencing are available to enclose a rectangular garden. - a) Represent the area of the garden as a function of the length of one side. - b) Graph the function. - c) What dimensions provide an area greater than 12 m²? Solution a) Let w represent the width of the garden in m. Let *l* represent the length of the garden in m. $$\mathbf{P} = 2l + 2w$$ $$16 = 2l + 2w$$ $$8 = l + w$$ $$8 - w = 1$$ Since $$A = l w$$ $\bigcirc = (8-w)w$ the zeros (x-intercepts) are 0 and 8 Find the vertex half way between the zeros, or complete the square to get $A = -1(w-4)^2 + 16$ c) Draw in the horizontal line y = 12. The intersection points represent the width of the garden when the area is 12m2. if the width is between (but NOT INCLUDING) 2 and 6 m, the dimensions provide an area greater than 12m2. This is written 2 < w < 6 ### 2.8.1 Modeling using Quadratic Functions #### Ex. 2 When bicycles are sold for \$300 each, a cycle store can sell 160 in a season. For every \$25 increase in the price, the number sold drops by 10. - a) Represent the sales revenue as a function of the price. - b) Use a graphing calculator to graph the function. - c) How many bicycles were sold when the total sales revenue is \$33 000? What is the price of <u>one</u> bicycle? - d) What range of prices will give sales revenue that exceeds \$40 000? #### Solution a) The quantities that vary all need to be defined (as variables). Let p represent the selling price, in dollars. Let n represent the number of bicycles sold. Let R represent the revenue, in dollars. Revenue = (price of a bicycle) x (number of bicycles sold) x (needs to be represented as a function of price) (This is the hardest part of this problem.) ### Rough work: i) the price increase = p - 300 Check: If the new price is \$375, then the price increase= $$p-300$$ = $375-300$ = 75 ii) the number of \$25 increases $$= \frac{p-300}{25}$$ Check: If the new price is \$375, then the number of \$25 increases $= \frac{375-300}{25}$ $= \frac{75}{25}$ $= 3$ increases of \$25 iii) the number of bicycles sold $$=160-20\left(\frac{p-300}{25}\right)$$ $$=160-2\left(\frac{p-300}{5}\right)$$ $$=160-\frac{2}{5}(p-300)$$ $$=\frac{160-\frac{2}{5}}{5}p+120$$ $$=-\frac{2}{5}p+280$$ $$-300$$ Now, Revenue = (price of a bicycle) x (number of bicycles sold) $$= p\left(-\frac{2}{5}p + 280\right)$$ $$= -\frac{2}{5}p^2 + 280p$$ or $(= -0.4p^2 + 280p)$ b) Use a graphing calculator to graph the function. let $$y_1 = -0.4x^2 + 280x$$ or $y_1 = -\frac{2}{5}x^2 + 280x$ c) How many bicycles were sold when the total sales revenue is \$33 000? What is the price of one bicycle? Find the intersection points to represent the price of one bicycle when the revenue is \$33 000. or p = 550 ∴ the price of one bicycle is \$150 or **\$550** Recall: Revenue = (price of a bicycle) x (number of bicycles sold) ∴ **60** bicycles were sold if the sales revenue is \$33 000. (since the price *increases* will result in *lower* sales) d) What range of prices will give sales revenue that exceeds \$40 000? If $$R = 40\ 000$$, let $y_3 = 40000$ (Don't forget to "turn off" y_2) Find the intersection points to represent the price of one bicycle when the revenue is exactly \$40 000. $$p = 200$$ or $p = 500$ Because we want when the revenue exceeds \$40 000, we DO NOT INCLUDE the intersection points in the solution. : if $$R > $40 000$$, then **200** < $p < 500$