3.7 Factoring a Sum or Difference of Cubes

Math Learning Target:

"I can factor fully a Sum or Difference of Cubes." $\Delta^3 \pm \Box^3$

Sum of Cubes:

Difference of Cubes:

Ex.1 Apply the Factor Theorem to factor completely:

a)
$$y^3 + 8$$

b)
$$8x^3 - 27$$

Hint:		

c) $a^3 - b^3$

Factor Formula for a Difference of Cubes:

Factor Formula for a Sum of Cubes:

Let's verify the result by expanding:

$$(a - b)(a^2 + ab + b^2)$$

Ex.2 Use the appropriate "new" formula to factor completely:

a) $8x^3 - 27$ (from the previous slide)

b) $27x^3 + 125y^3$

The Factor Theorem can be applied to any expression. However, it <u>may</u> be more difficult to use than if one recognizes the expression as a sum/difference of cubes. Hence, the following algorithm is suggested, from now on, when required to factor:

Is the expression a sum/difference of cubes? If so, use the appropriate formula. Otherwise, apply the Factor Theorem directly.

Entertainment: p.182 #2acegi, 3, 4acegi, 5ac, 6 Are you factoring <u>fully</u>?