Number Systems

Rational Zeros Theorem

If P(x) is a polynomial with integer coefficients,

and if
$$\frac{p}{q}$$
 is a zero of P(x), i.e. $P\left(\frac{p}{q}\right) = 0$

then p is a factor of the constant term of P(x) and q is a factor of the leading coefficient of P(x).

$$x^4 - 2x^3 - 7x^2 + 8x + 12$$

Lesson 4.1_1 Ex.2

vs
$$(x+2)(10x^2-19x-15)=0$$

New

$$6x^3 + 41x^2 - 8x - 7 = 0$$

4.2 Solving Linear Inequalities

Math Learning Target:

"By the end of class, I can solve any linear inequality."

Recall:

< =

>

 \leq

 \geq

 \neq

Ex. 1: Consider the inequality 12 > 9...

12 > 9 12 > 9 12 > 9 12 > 9 12 > 9

Rule:

Whenever you multiply or divide an inequality by a negative number, you MUST reverse the inequality sign to preserve the validity.

A linear inequality is an inequality that contains algebraic expression(s) that has (have) at most degree 1.

Ex. 2: Solve the linear inequality $\{x \in \mathbb{R}\}$.

$$3x - 5 \le 0$$

Ex. 3: Solve $\{x \in \mathbb{R}\}$. 5 - 2x < -7 + x

Ex. 4: Solve $\{x \in \mathbb{R}\}$. Express your final answer in interval notation. $|x| \ge 4$

Ex. 5: Solve $-7 \le 5(2x+3)-4(x+1) \le 35$

- a) $x \in \mathbb{R}$
- b) $x \in W$
- c) $x \in \mathbb{Z}$

Entertainment: pp. 213-215 #2bc, 4f, 6d, 7ef, 9*, 12, 15 Challenge: #19 *answers may vary for 9b)