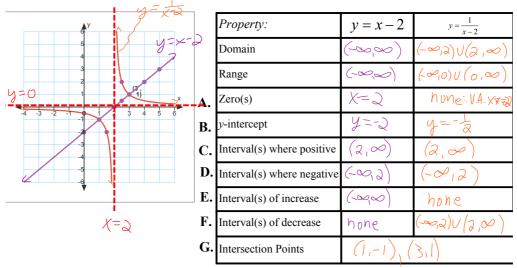
5.1 Graphs of Reciprocal Functions

Math Learning Target:

"I know all properties of any linear or quadratic function.

As a result, I immediately know the properties of the reciprocals of these functions. Finally, I can graph the reciprocal of any linear or quadratic function using only the associated properties."


For a function f(x) where $f(x) \neq 0$, the <u>reciprocal function of f(x)</u> is $y = \frac{1}{f(x)}$.

STOP

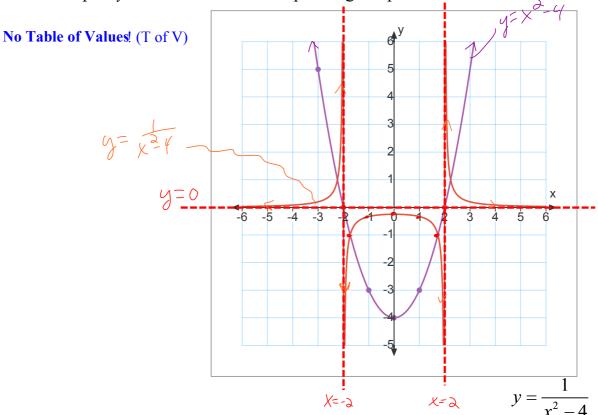
Note: the reciprocal function is **not the same** as the **inverse function**

Ex.1: Graph
$$y = x - 2$$
 and its reciprocal function $y = \frac{1}{x - 2}$

a) Graph these functions using transformations of parent functions.

A linear function versus its reciproca(by properties examined above)

- **A.** An x-value that gives y = 0 for the line, now gives a value of zero in the denominator of its reciprocal. Division by zero is undefined, creating a vertical asymptote at that point.
- **B.** For every y-value calculated for the line, it can be placed in the denominator of its reciprocal. If y = a is an intercept for the line, it is $y = \frac{1}{a}$ for its reciprocal.
- C. If y = a is positive, then $y = \frac{1}{a}$ is also positive.
- **D.** If y = a is negative, then $y = \frac{1}{a}$ is also negative.
- **E.** If numbers for y in one function increase, then the corresponding numbers for $\frac{1}{y}$ decrease.
- \mathbf{F} . If y-values decrease, then the values for $\frac{1}{2}$ increase.
- **G.** They must share points when y = 1 or y = -1, assuming they belong to the range of the function. For example, At x = 3 the line its reciprocal


the line its reciprocal y = x-2 = 3-2 = 1 $y = \frac{1}{x-2}$ $= \frac{1}{3-2}$ $= \frac{1}{1}$ = 1they share (3, 1)

Finally, ALL reciprocal functions always have a horizontal asymptote y = 0.

All of the relationships between properties for a line versus its reciprocal, also apply for a quadratic versus its reciprocal.

From now on, all reciprocal functions MUST be graphed according to the relationships between the properties (A to H) of the associated functions.

Ex. 2: Graph $y = x^2 - 4$ and its corresponding reciprocal function.

One more property, and the relationship between a quadratic and its reciprocal:

	Property:	$y = x^2 - 4$	$y = \frac{1}{x^2 - 4}$
Н.	Local Extrema	(0,-4)	$(0, -\frac{1}{4})$

H. A local maximum for one function corresponds to a local minimum for its reciprocal, and vice versa, for a given x.

Before you begin today's entertainment:

- 1. All graphs from now on <u>cannot</u> be made from a table of values. Use properties A through H;
- 2. Whenever the text says "sketch", ignore this create a "graph" instead.

Complete pp. 254-257 #1, 6, 7, 8cf, 11, 12**. Challenge yourself! #15

** there is an incorrect final answer for 12e). It should be: $D: \{t \in R \mid 0 \le t \le 10000\}$ $R: \{b \in W \mid 0 \le b \le 10000\}$