Before we begin, are there any questions from last day's work?

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) calculate the arc length of a circle.
- b) calculate the area of a sector of a circle.

Cake Decorating assignment due today.

Project Renovation assignment past due.

6.9.1: Arc Length and Sector Area

There are problems that often occur in industry that involve arcs and sectors of circles Consider the following diagram:

A circle of radius r is drawn, with sector BOC bounded by 2 radii, OB and OC, and an arc BC, of length a. The area of the sector is A, and the sector angle at the centre O is θ , measured in degrees.

We can use the proportional relationship:

$$\frac{arc\ length}{circumference} = \frac{sector\ area}{area\ of\ circle} = \frac{sector\ angle}{complete\ rotation}$$

So, if

$$\frac{a}{2\pi r} = \frac{A}{\pi r^2} = \frac{\theta}{360^\circ}$$

then

$$\frac{a}{2\pi r} = \frac{\theta}{360^{\circ}}$$
 and $\frac{A}{\pi r^2} = \frac{\theta}{360^{\circ}}$

and isolating, [arc length] $a = 2\pi r$

$$a = 2\pi r \left(\frac{\theta}{360^{\circ}}\right)$$

[sector area]
$$A = \pi r^2 \left(\frac{\theta}{360^{\circ}} \right)$$

Thus both the arc length, a, and sector area, A, can be calculated once the radius, r, and the sector angle, θ , in degrees, are known.

Ex. 1 A cam for a sewing machine's stitching-control cycle is circular in shape, with a flat side, and has the dimensions shown.

a) Calculate the total perimeter of the cam. (to 3 decimal places)

: the total perimeter of the cam is 6.223 cm

b) If the cam is 0.36 cm thick and is made from an alloy whose density is 3.8g/cm³, determine the mass of the cam. (to 3 decimal places)

Hint: the cam is a prism, Volume prism = Area base x height, then mass = volume x density

1.72 cm -

r = 1.04 cm

$$= \frac{\Theta}{360} \left(\pi \Gamma_{9} \right) + \frac{1}{25}$$

$$= \frac{248}{360} (\pi (1.04)^{3}) + \frac{1}{2} (1.72) (0.58)$$

$$h = 1.04^{2} - 0.86^{2}$$

$$h = 1.04^{2} - 0.86^{2}$$

$$= 1.0238$$
 $= 3.8912$ $= 3.8912$

the mass of the cam 63.8919.

6.9.2 Arc Length and Sector Area

 A snap-ring retainer clip with dimensions shown is part of a universal joint assembly, and fits snugly around the bearing cap when assembled.
 What length of the clip is in contact with the bearing cap? (to 2 decimal places)

The pointer on a torque wrench is 42 cm long, and moves through an angle of 16°. Through what distance does the tip of the pointer move? (to 1 decimal place)

3. Calculate the length of the spring on the bow compasses shown. (to 2 decimal places)

 The belt on a copier machine is in contact with a drive cylinder over 105° of its surface, as shown. If the length of contact is 5.62 cm, what is the radius of the drive cylinder? (to 2 decimal places)

The vent cover on a forced air heating system is in the form of a sector of a circle.
 Determine the area of sheet metal used to make the vent cover. (to 1 decimal place)

2. The pointer on a torque wrench is 42 cm long, and moves through an angle of 16°. Through what distance does the tip of the pointer move? (to 1 decimal place)

$$a = \frac{Q}{360}(a \pi r)$$

$$= \frac{16}{360}(a \pi r)$$

14 cm r=7 diameter (m

6. The safety shield for a motor pulley drive has the dimensions shown.

30 cm diameter

a) Calculate the perimeter of the shield. (to 1 decimal place)

b) Determine the area of the shield. (to 1 decimal place)

$$A_{5ach,1} = \frac{9}{360}\pi r^{2}$$

$$= \frac{236}{360}\pi (15)^{2}$$

$$= 53.02$$

$$= 63.38$$

$$\begin{array}{lll}
+ A_{\text{Section}} + 2A_{\text{TRAREZOND}} & P = 15 \text{ cm} \\
0 & C & M^{2} \\
A_{\text{Section}} = \frac{|a_{\text{N}}|^{6}}{360^{6}} \pi (7)^{2} \\
&= 104^{6} & 17 \text{ cm} \\
&= 104^{6} & 17 \text{ cm} \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 235 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\
&= 299.64 \\$$