_	_ 1		•	▼	\sim 1	/ `	\
		OTI	' C	Learning			١.
		12 V		т еанино	111111		•
J		iu y	.		Our	V	<i>,</i>
						\	,

Date: _		
	(Every lesson)	

By the end of the class, I will be able to:

a) use function notation to represent linear and quadratic functions.

We will take up Homework Questions from last day on the final slide.

Last day, I assigned an extra worksheet on Domain and Range.

I posted my solutions in our Google Classroom.

Also, I highly recommend that you print tomorrow's lesson in advance.

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) use function notation to represent linear and quadratic functions.

1.2 Function Notation

Function notation, such as f(x), is used to represent the value of the dependent variable for a given value of the independent variablex.

x is often called the input and f(x) is called the output.

$$f(x)$$
 is read "f of x" or "f at x"

Compared to the notation you have been used toy and f(x) are interchangeable.

Therefore
$$y = -3x + 4$$
 can be written as $f(x) = -3x + 4$
or $y = 2(x-3)^2 + 4$ can be written as $f(x) = 2(x-3)^2 + 4$

Ex. 1 If f(x) = -x(x-6) then find:

a)
$$f(2)$$
 b) $f(a)$ c) Find x if $f(x) = -16$

$$= -(a)(a) - (b) = -x(x-6)$$

$$= -a(a-6) - (b = -x^2 + 6x)$$

$$= -a-3(a-6) - (a-3) - (a-3$$

Ex. 3 If $f(x) = x^2$ then find f(x+4).

$$= x_{9} + 8x + 10$$

 $= (x + 1)_{5}$

Recall the 3 forms of quadratic functions:

standard form

vertex form

intercept form

factored form

zeros form

 $y = ax^{2}+bx+c$ $y = a(x-h)^{2}+k$ y = a(x-r)(x-s) = a(x-r)(x-s)

Reviewing "completing the square" to find the vertex.

$$y = -x(x-6)$$

$$= -x^{2} + 6x$$

$$= -1(x^{2} - 6x)$$

$$= -1(x^{2} - 6x + 9 - 9)$$

$$= -1(x-3)^{2} - 1(-9)$$

$$= -(x-3)^{2} + 9$$

$$= -(x-3)^{2} + 9$$

$$= -(x-3)^{2} + 9$$

$$(b)^{2}$$
 $-(-6)^{2}$
 $-(-3)^{2}$
 $-(-3)^{2}$

Are there any Homework Questions you would like to see on the board?

Last day's work: p. 2 #1 -8 7 READ pp. 5-9 pp. 10-11 #1 -3, 6, 7a, 8, 9b [p.13 #1-3] pp. 35-36 #1 - 3, 5

Domain and Range Worksheets #1&2

Today's Homework Practice includes:

pp. 22-23 #1, 2, 4 - 7, 9, 10

Funcon Notaon Worksheet #1 - 6

(answer keys are posted on the class Website)

p. 2

7. For each quadratic relation, list the transformations you need to apply to $y = x^2$ to graph the relation. Then sketch the graph.

a)
$$y = x^2 - 2$$

c)
$$y = \frac{1}{2}(x-1)^2 - 4$$

b)
$$y = -4x^2 + 3$$

d)
$$y = -2(x+3)^2 + 5$$

a) y = x 2 b) $y = -4x^2 + 3$ d) $y = -2(x + 3)^2 + 5$ 0 = -4

p. 11 6. Describe the graphs of the relations y = 3 and x = 3. Are these relations functions? Explain.

y=3 is a horizontal line, and IS A function.

- X=3 is a vertical line is 15 NOT a function. p. 11 8. a) Substitute x = 0 into each equation and solve for y. Repeat for x = -2.

i)
$$3x + 4y = 5$$

ii) $x^2 + y = 2$
iv) $x + y^2 = 0$

iii)
$$x^2 + y = 2$$

ii)
$$x^2 + y^2 = 4$$

iv)
$$x + y^2 = 0$$

ii) $x^2 + y^2 = 4$ iv) $x + y^2 = 0$ b) Which relations in part (a) appear to be functions? c) How could you verify your answer to part (b)?

i) 3(0)+4y=5 (i) $(0)^2+y^2=4$ (ii) $(0)^2+y=2$ iv) $(0)^2+y=0$ $y=\frac{1}{4}$ $y=\pm 2$ $y=\pm 2$ y=0Dappear to functions

i) Yeo (i) ND

iii) Yos iv) appears to be.

but is Not a function

ya