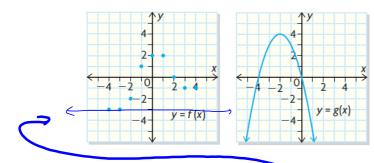
Today's Learning Goal(s):


Date: Leb 26/19
(Every lesson)

By the end of the class, I will be able to:

- a) quickly graph the 5 parent functions.
- b) state the domain and range of a function from the graph, table or equation.

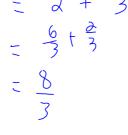
6a 5d Last day's work: pp. 22-23 #1, 2, 4 - 7, 9, 10

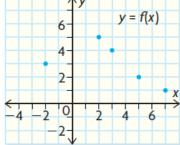
p. 22 2. The graphs of y = f(x) and y = g(x) are shown.

Funcon Notaon Worksheet #1 - 6 (answer keys on class website) 40 21

Using the graphs, evaluate

- a) f(1)
- b) g(-2)
- c) f(4) g(-2)d) x when f(x) = -3


.. X = -4 cmol X = -3


p. 23

5. For
$$f(x) = \frac{1}{2x}$$
, determine

- a) f(-3) b) f(0) c) f(1) f(3) d) $f(\frac{1}{4}) + f(\frac{3}{4})$

- **6.** The graph of y = f(x) is shown at the right.
 - a) State the domain and range of f.
 - **b**) Evaluate.
 - i) f(3)
- ii) f(5)
- iii) f(5-3)iv) f(5) f(3)

Today's Learning Goal(s):

Date: Feb. 26/19
(Every lesson)

By the end of the class, I will be able to:

- a) quickly graph the 5 parent functions.
- b) state the domain and range of a function from the graph, table or equation.

A 6a 7 d Last day's work: pp. 22-23 #1, 2, 4 – 7, 9, 10

Funcon Notaon Worksheet #1 - 6 (answer keys on class website)

4e

from Funcon Notaon Worksheet

2. Evaluate the following expressions given the functions below:

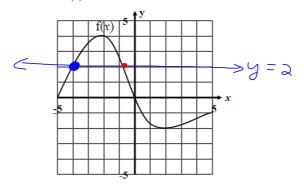
$$g(x) = -3x + 1$$
 $f(x) = x^2 + 7$ $h(x) = \frac{12}{x}$ $j(x) = 2x + 9$

$$f(x) = x^2 + 7$$

$$h(x) = \frac{12}{x}$$

$$j(x) = 2x + 9$$

i. Find
$$x$$
 if $h(x) = -2$


$$-\beta = \frac{\times}{12}$$

$$-3x = 13$$

$$x = 13$$

$$x = 13$$

4. Given this graph of the function f(x):

Find:

a.
$$f(-4) =$$

b.
$$f(0) =$$

e
$$y$$
 when $f(y) = 2$

e. *x* when
$$f(x) = 2$$
 f. *x* when $f(x) = 0$

1.3 Parent Functions

1.4 Domain & Range (revisited)

Equation of Function	Name of Function	Sketch of Graph	Special Features/ Symmetry	Domain	Range
f(x) = x	Linear	III V	Straight line Goes through origin In QI and QIII	$\{x \in \mathbb{R}\}$	$\{y \in \mathbb{R}\}$

Equation of Function	Name of	Sketch of Graph	Special Features/ Symmetry	Domain	Range
$f(x)=x^2$	Quadratic	-5 ×	 Parabola opening up Vertex at origin y-axis is A. of S. In QI and QII 	$\{x \in \mathbb{R}\}$	$\{y \in \mathbb{R} \mid y \ge 0\}$

Key Points: (0,0)

(1,1) (-1,1)

(2,4) (-2,4)

Equation of Function	Name of Function	Sketch of Graph	Special Features/ Symmetry	Domain	Range
$f(x) = \sqrt{x}$	Square Root	-5 5 x	Curve Starts at origin Only in QI	$\left \{ x \in \mathbb{R} \ x \ge 0 \} \right $	$\{y \in \mathbb{R} \mid y \ge 0\}$

Key Points: (0,0)

(1,1)

(4,2)

Equation of Function	Vame of Cunction	Sketch of Graph	Special Features/ Symmetry	Domain	Range
----------------------	------------------	-----------------	----------------------------------	--------	-------

$$f(x) = \frac{1}{x} | \text{Reciprocal} | \begin{array}{c} y = 0 \\ y = 0 \\ y \neq A \end{array}$$
 Reciprocal Reciprocal

Key Points:
$$(1,1)$$
 $(-1,-1)$
 $A = horizontal$
 $(2,\frac{1}{2})$ $(-2,\frac{-1}{2})$
 $(\frac{1}{2},\frac{1}{2})$ $(-1,-1)$

asymptote
$$\left(\frac{1}{2},2\right)\left(\frac{-1}{2},-2\right)$$

$$f(x) = |x| \text{ Absolute Value}$$
 Absolute
$$\begin{cases} x \in \mathbb{R} \\ y = x \text{ origin } \\ y = x \text{ or S.} \\ y = x \text{ in QI and QII} \end{cases}$$

Key Points: (0,0)

(1,1) (-1,1)

(2,2) (-2,2)

Assignment - hand in at the beginning of next class

On a full size sheet of graph paper, graph the following functions.

- Identify the key points for each function
- Use a scale of 1 box = 1 unit
- State the Domain and Range

$$y = \sqrt{x} \qquad \qquad y = |x| \qquad \qquad y = \frac{1}{x}$$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 22-23 #1, 2, 4 – 7, 9, 10 Funcon Notaon Worksheet #1 - 6 (answer keys on class website)

Today's Homework Practice includes:

p. 28 #1 - 3

pp. 35-37 #4, 9, 11 [16, 17]

If time, show number systems Venn Diagram.

Number Systems Real=QUQ

Rational: $Q = \frac{9}{6} |a,b \in \mathbb{Z}, b \neq 0$

Integers: Z= 3..., 2,-1,0,1,2,...}
Whole = \(\{ \) 0,1,2,3,...\(\}

$$\frac{1}{1} = \frac{20,1,2,3,...3}{1}$$

Natural

Irrational: Q

979979997