- a) evaluate a power involving a rational exponent.
- b) simplify expressions involving rational exponents.

4.3 Working with Rational Exponents

Rational Exponents are exponents that are **fractions**, and are directly related to radicals.

 4^{-2} is the same as $\sqrt{4}$

$$8^{\frac{1}{3}}$$

$$81^{\frac{3}{4}}$$

$$81^{-\frac{3}{4}}$$

In general:

$$\therefore b^{\frac{1}{n}} = \sqrt[n]{b}$$

$$\therefore b^{\frac{1}{n}} = \sqrt[n]{b} \qquad \therefore b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^m$$

Ex.1 Write in radical form, then evaluate without using a calculator.

a)
$$36^{\frac{1}{2}}$$

a)
$$36^{\frac{1}{2}}$$
 b) $27^{-\frac{1}{3}}$ c) $8^{-\frac{2}{3}}$ d) $16^{\frac{3}{4}}$

c)
$$8^{-\frac{2}{3}}$$

d)
$$16^{\frac{3}{4}}$$

Ex.2 Write each root as a power with a rational exponent.

a)
$$\sqrt[3]{27}$$

b)
$$(\sqrt[4]{16})^3$$

c)
$$(\sqrt[3]{81})^{-2}$$

Ex.3 Write as a single power, *do not evaluate*.

a)
$$\frac{\sqrt{16}}{\sqrt{2}}$$

b)
$$\frac{\sqrt{8}}{\sqrt{4}}$$

Worth remembering:

$$1^{2} = 1$$
 $1^{3} = 1$ $1^{4} = 1$
 $2^{2} = 4$ $2^{3} = 8$ $2^{4} = 16$
 $3^{2} = 9$ $3^{3} = 27$ $3^{4} = 81$
 $4^{2} = 16$ $4^{3} = 64$ $4^{4} = 256$
 $5^{2} = 25$ $5^{3} = 125$ $5^{4} = 625$
 $10^{2} = 100$ $10^{3} = 1000$ $10^{4} = 10000$

Ex.4 Evaluate, *without* using a calculator.

a)
$$81^{\frac{1}{4}}$$

b)
$$(-8)^{\frac{1}{3}}$$

c)
$$64^{-\frac{1}{2}}$$

d)
$$(-100\ 000)^{-\frac{1}{5}}$$
 e) $8^{\frac{2}{3}}$

e)
$$8^{\frac{2}{3}}$$

g)
$$\left(16^{\frac{7}{8}}\right)\left(16^{-\frac{1}{4}}\right)$$
 $16^{\frac{1}{8}}$