Today's Learning Goal(s):

By the end of the class, I will be able to:

a) describe the characteristics of the graphs and equations of exponential functions.

Last day's work:

Date:

p. 236 3. Consider the expression $\frac{x^7(y^2)^3}{x^5y^4}$.

- a) Substitute x = -2 and y = 3 into the expression, and evaluate it.
- b) Simplify the expression. Then substitute the values for x and y to evaluate it.
- c) Which method seems more efficient?

$$\frac{x^{7}(y^{3})^{3}}{x^{5}y^{4}} = x^{7-5}y^{6-4}$$

$$= x^{7}y^{6}$$

$$= (-3)^{3}(3)^{3}$$

$$= 4(9)$$

$$= 36$$

p. 237 8. Evaluate. Express answers in rational form with positive exponents.

a)
$$(\sqrt{10000x})^{\frac{3}{2}}$$
 for $x = 16$

$$= (\sqrt{10000})^{\frac{3}{2}}$$

$$= (\sqrt{10000})^{\frac{3}{2}}$$

$$= (\sqrt{1000})^{\frac{3}{2}}$$

$$= (\sqrt{1000}$$

9. Simplify. Express answers in rational form with positive exponents.

9. Simplify. Express answers in rational form with positive exponents.

a)
$$(36m^4n^6)^{0.5}(81m^{12}n^8)^{0.25}$$
b) $\left(\frac{(6x^3)^2(6y^3)}{(9xy)^6}\right)^{-\frac{1}{3}}$
c) $\left(\frac{\sqrt{64a^{12}}}{(a^{1.5})^{-6}}\right)^{\frac{2}{3}}$
d) $\left(\frac{(x^{18})^{\frac{-1}{6}}}{\sqrt[3]{243x^{10}}}\right)^{0.5}$

$$= 6m^2h^3 \cdot 3m^3h^3$$

$$= 18m^2h^3 \cdot 3^4h^3$$

$$= (64a^{12})^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$$

$$= (64a^{12})^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$$

$$= (64a^{12})^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$$

$$= (64a^{12})^{\frac{1}{2}} \cdot 3^{\frac{1}{2}}$$

Exploring Properties of Exponential Functions 4.5

p. 240 Invesgate – students complete A – E individually (or in pairs).

A.	g(x)	=x	FD
	O\ /		1 /

	147 051	
x	y] (157 Diff
-3	-3	-2-(-3)
-2	-2	= (-2)
-1	-1) -1-(-a) =1
0	0	0-(-1)=1
1	1	>1-0=1
2	2 ′)2-1-1
3	3 1	D3-2=1
4	4	74-3=1
5	5	5-4=1

$$h(x) = x^2$$

(-7		FD SD
х	y	and Diff
-3	9 、	4-9
-2	4 (=-5 -3-(-5
-1	1	21-8/ = 2
0	0	2.12
1	1	
2	4	
3	9 -	15-2
4	16	P7-2
5	25 ~	pg-d
		2. 1 NCC

$$k(x) = 2^x$$

	_	10 10
x	y	8x118
-3	1/8	4-1 = 8 4-18 = 3
-2	1/4	1-1-1 = 8
-1	1/2	1-2-1 2-1
0	1	
1	2	73:4-0
2	4	73/4-2-2
3	8	N 28:4-2
4	16	16 ÷ 8= a
5	32	
, ,		<u> </u>

h(x) is quadratic k(x) is exponential

- $g(x) \rightarrow$ first differences are equal B.
 - $h(x) \rightarrow$ second differences are equal
 - $k(x) \rightarrow$ ratio of successive y-values are equal

use first differences to eliminate translation?

$$R = \{y \in \mathbb{R}\}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ v \in \mathbb{R} \mid v \ge 0 \}$$

$$D = \{ x \in \mathbb{R} \}$$

$$R = \{ y \in \mathbb{R} \mid y > 0 \}$$

E. $g(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases at a consistent rate

 $h(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) decreases until x = 0 and then increases

 $k(x) \rightarrow$ as independent variable (x) increases,

the dependent variable (y) also increases, slowly at first and then quickly.

Show with DESMOS?

C https://www.desmos.com/calculator/dcbvlufgmb

https://www.desmos.com/calculator/snogpkesaw

https://www.desmos.com/calculator/yabmbc4wcd

$$y = x$$
 $y = x^2$ $y = x^2$ $y = 2^x$ $y = 2^x$

Reminder:

Asymptotes MUST always be drawn and labelled.

G. For all 3 functions, D = $\{x \in \mathbb{R}\}$ and R = $\{y \in \mathbb{R} \mid y > 0\}$.

The y-intercept = 1, there are no x-intercepts,

and there is a Horizontal Asymptote [H.A.] at y = 0 (x-axis).

H. $y = 10^x$ increases fastest, and $y = 2^x$ has the slowest rate of increase.

- J. All properties remain the same as G.
- K. As the values of x increase the graphs with fractional bases decrease (decay).

Summary: Properties of $y = b^x$

- · b>0 16 #1
- *y*-int = 1
- H.A.: y = 0 (x-axis) [Horizontal Asymptote]
- D = $\{x \in \mathbb{R}\}$
- $R = \{y \in \mathbb{R} \mid y > 0\}$
- Increasing when b > 1 (growth)
- The greater the value of b, the faster the growth
- Decreasing when 0 < b < 1 (decay)
- Equal ratios of successive *y*-values

For tomorrow, think about the general form of $y = a(b^x) + c$ and how the values of a and c relate to the graphs we drew today.

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 235-237 #(1 – 2)ace, 3, (4 – 9)ace [14] Review p. 239

Today's Homework Practice includes:

pp. 240-241 A - P **READ** p. 242 p. 243 #1, 2