p. 254 6. A T-ball player hits a ball from a tee that is 0.6 m tall. The height of the ball at a given time is modelled by the function

 $h(t) = -4.9t^2 + 7t + 0.6$, where height, h(t), is in metres and time, t, is in seconds.

a) What will the height be after 1 s?

a) What will the height be after 1 s?
b) When will the ball hit the ground?
$$A(1) = -4.9(1)^{2} + 3(1) + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 7 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$= -4.9 + 0.6$$

$$=$$

=1.510

- **8.** For the function $f(x) = (kx^2 + 8x + 5)$, what value(s) of k will have
 - two distinct real solutions?
 - one real solution?
 - c) no real solution?

$$(8)^2 - 4(2)(5) > 0$$

$$R < \frac{-64}{-20}$$

$$k < \frac{16}{5}$$

a)
$$6^{2}-4ac > 0$$
 b) $6^{2}-4ac = 0$

$$(8)^{2}-4(k)(5)=0$$

$$(8)^{2}-4(k)(5)<0$$

$$k > \frac{-64}{-20}$$

$$k > \frac{6}{5}$$

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Define the following terms: acute angle, right angle, hypotenuse
- b) Use the Pythagorean Theorem (PT) to find the length of a side.
- c) Identify the opposite, adjacent and hypotenuse side of a triangle relative to a given angle.

MCF 3MI

Getting Started Unit 5:

SOH CAH TOA

$$\sin \theta = \frac{\rho \rho}{hy\rho}$$

$$\cos \theta = \frac{\alpha d\rho}{hy\rho}$$

$$\tan \theta = \frac{\alpha \rho}{hy\rho}$$

Ex. 1 State the primary trig ratios for $\angle A$

 $\sin A = \frac{4}{5} \qquad \cos A = \frac{3}{5} \qquad \tan A = \frac{4}{3}$

Ex. 2 Calculate the measure of the indicated angle.

a)

Method: Label, Ratio, Solve. b)

Ex. 3 Find the missing sides in the following diagram.

Ex. 4 Use a calculator to evaluate to the nearest thousandth (3 decimal places).

c)
$$\cos 49^\circ$$

$$= 0.6560$$

= 0.95 (94) Ex. 5 Use a calculator to determine θ to the nearest degree.

b)
$$\tan \theta = 0.2347$$

$$\theta = \tan^{-1}(0.2347)$$

$$= 13.2$$

$$= 13^{\circ}$$

Homework: pp. 261-262 # 2 - 9