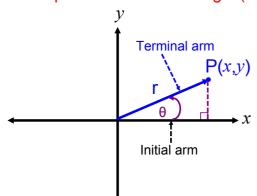
T	• 7	•	1	/ \	
Todox	7'C	Anrnin G	(÷001		١.
i Ouav	/ 5	Learning	Ciuai	15.	ı.
				(~)	•

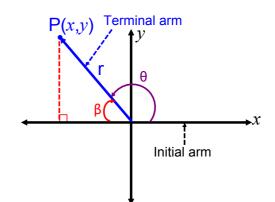
By the end of the class, I will be able to:

- a) explain the relationship between the ratios of an angle in standard position, and the related acute angle (RAA).
- b) determine the trig ratios of angles between 0° and 360°.

```
Last day's work: p. 292 #1 – 4

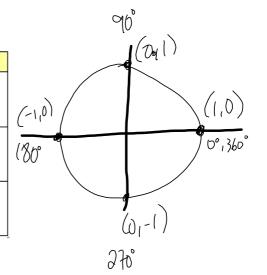

pp. 299-300 #(1 – 5)ac

(3 screens away)
```


Defining an angle in "standard position". Explain: $0^{\circ} \le \theta \le 360^{\circ}$

 θ = Principal Angle

 β = Related Acute Angle (RAA)



Note: In Quadrant I: $\theta = \beta$

Memorize this Chart!

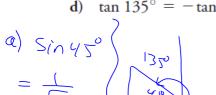
θ	30°	45°	60°
$\sin heta$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} \operatorname{or} \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} \frac{\text{or } \sqrt{2}}{2}$	$\frac{1}{2}$
an heta	$\frac{1}{\sqrt{3}} \operatorname{or} \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

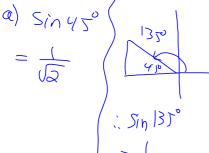
Are there any Homework Questions you would like to see on the board?

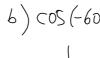
From Wednesday: pp. 286-287 # 1 - 9

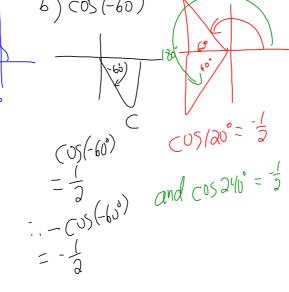
Last day's work: p. 292 #1 - 4

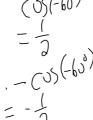
pp. 299-300 # (1-5)ac

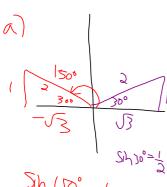

Extra STUFF ON Website! Today's Homework Practice includes: pp. 299-300 #(1 – 5)bd Standard Posion Wkst#8-3

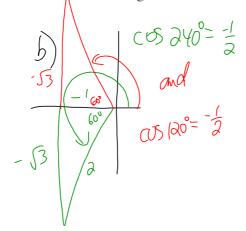

1cd, 2bc, 6, 7a, 9

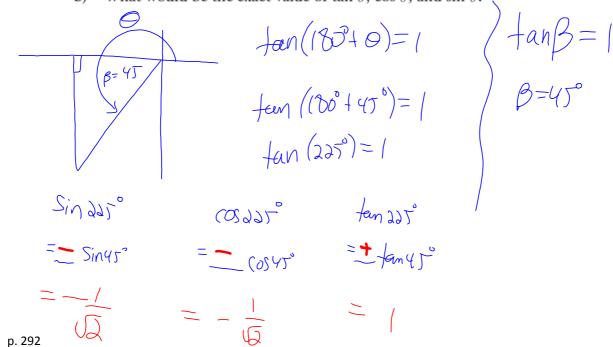

Worksheet #2b) Answer should be +2


- 3. Sylvie drew a special triangle in quadrant 3 and determined that $\tan (180^{\circ} + \beta) = 1.$
 - a) What is the value of angle β ?
 - **b**) What would be the exact value of $\tan \theta$, $\cos \theta$, and $\sin \theta$?


- p. 292 1. State all the angles between 0° and 360° that make each equation true.
 - $\sin 45^{\circ} = \sin \square$
 - $= -\cos(-60^{\circ})$
 - $\tan 30^{\circ} = \tan \|$
 - d) $\tan 135^{\circ} = -\tan$






- p. 292
 - 2. Using the special triangles from Lesson 5.2, sketch two angles in the Cartesian plane that have the same value for each given trigonometric ratio.
 - sine
- b) cosine
- c) tangent

- p. 292 3. Sylvie drew a special triangle in quadrant 3 and determined that $\tan (180^{\circ} + \theta) = 1$.
 - a) What is the value of angle θ ?
 - **b**) What would be the exact value of $\tan \theta$, $\cos \theta$, and $\sin \theta$?

p. 299

- 3. Use the method in Example 3 to determine the primary trigonometric ratios for each given angle.
 - a) 180°
- **b**) 270°
- c) 360°

$$COS_{360}^{\circ} \rightarrow COS_{360}^{\circ}$$

$$= \frac{\lambda}{\Gamma}$$

$$= \frac{1}{\Gamma}$$

$$= \frac{1}{\Gamma}$$

- 4. Use the related acute angle to state an equivalent expression.
 - a) sin 160°
- b) $\cos 300^{\circ}$ c) $\tan 110^{\circ}$ d) $\sin 350^{\circ}$