Today's Learning Goal(s):

By the end of the class, I will be able to:

a) prove trigonometric identities.

#11 spotlights Sh= 9.4m

Last day's work: pp. 338-339 #1 – 5, 8 – 23 p. 340 #2

p. 339 #13 See 2 soluons that follow.

#9->ambiguous

9. Two forest fire stations, *P* and *Q*, are 20.0 km apart. A ranger at station *Q* sees a fire 15.0 km away. If the angle between the line *PQ* and the line from *P* to the fire is 25°, how far, to the nearest tenth of a kilometre, is station *P* from the fire?

Be Careful if SSA =1477° X=Sinq3' > Shat's

= 5.7 km

11. Two spotlights, one blue and the other white, are placed 6.0 m apart on a track on the ceiling of a ballroom. A stationary observer standing on the ballroom floor notices that the angle of elevation is 45° to the blue spotlight and 70° to the white one. How high, to the nearest tenth of a metre, is the ceiling of the ballroom?

p. 339 #13 Soluon #1

13. While standing at the left corner of the schoolyard in front of her school, Suzie estimates that the front face is 8.9 m wide and 4.7 m high. From her position, Suzie is 12.0 m from the base of the right exterior wall. She determines that the left and right exterior walls appear to be 39° apart. From her position, what is the angle of elevation, to the nearest degree, to the top of the left exterior wall?

$$\frac{\sin \alpha}{12} = \frac{\sin 39}{8.9}$$

$$= \sin^{-1}(12x \frac{\sin 39}{8.9})$$

$$= 58.05$$
But $\alpha = 121.9$

$$= 121.9$$

$$= 121.9$$

· 19,1°

Suzie

$$\frac{2}{5in19.1}$$
 = $\frac{8.9}{5in39}$
 $\frac{2}{5in39}$ = $\frac{4.62}{5in39}$

+and =
$$\frac{4.7}{4.6}$$

D=fan ($\frac{4.7}{4.6}$)

= $\frac{45.6}{4.6}$

= $\frac{46}{4.6}$

The angle of elevation is $\frac{46}{60}$ have $\frac{46}{600}$ at back.

p. 339 #13 Soluon #2

13. While standing at the left corner of the schoolyard in front of her school, Suzie estimates that the front face is 8.9 m wide and 4.7 m high. From her position, Suzie is 12.0 m from the base of the right exterior wall. She determines that the left and right exterior walls appear to be 39° apart. From her position, what is the angle of elevation, to the nearest degree, to the top of the left exterior wall?

$$\frac{\sin \alpha}{12} = \frac{\sin 39^{\circ}}{8.9}$$

$$\approx = \sin^{-1}(12 \times \frac{\sin 39^{\circ}}{8.9})$$

$$= 58.05^{\circ}$$

$$\approx 82.9^{\circ}$$

$$\frac{\times}{5in82.9^{\circ}} = \frac{8.9}{5in39^{\circ}}$$

$$X = \sin 82.9^{\circ} \times \frac{8.9}{5in39^{\circ}}$$

$$= 14.033$$

$$= 14.03$$

Suzie

Trigonometric Identities 5.5

Equations are valid for only certain values of the variable.

For example:

$$2x + 1 = 7$$

$$2x = 7 - 7$$

$$2x = 6$$

$$x = 3$$

$$x = 3$$
 is the only value to make the equation true.

$$x^{2}-5x-14=0$$

$$(x-7)(x+2)=0$$

$$1x=7 \text{ or } x=-2$$

x = 7 and x = -2 are the only values to make the equation true.

Identities are valid for all values of the variable. For example:

$$2(x + 3) = 2x + 6$$

$$2(x+3) = 2x+6$$
 $x^2 + 6x + 9 = (x+3)^2$

Let's start with the circle definitions to develop some identities that we can use later.

SYR CXR TYX

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x}$$

To Prove an Identity:

* Separate the LS and RS, and work on them separately

Ex.1 Prove that
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$LS = \tan \theta$$

$$= \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\sin \theta}{\sin \theta$$

Q.E.D. (also written QED)

[&]quot;quod erat demonstrandum"

[&]quot;that which was to be demonstrated"

Ex.2 Prove that $\sin^2 \theta + \cos^2 \theta = 1$

$$LS = Sin^{3}0 + (oS^{3}0)$$

$$= (x)^{3} + (x)^{3}$$

$$= y^{3} + x^{3}$$

$$= y^{3} + x^{3}$$

$$= r^{3}$$

Use "known" identities; i.e. known since Ex.1&2 Ex.3 Prove that

a)
$$\frac{\cos\theta \tan\theta}{\sin\theta} = 1$$

b) $\cos\theta = \frac{1}{\cos\theta} - \sin\theta \tan\theta$

$$CS = \frac{\cos\theta \tan\theta}{\sin\theta} = 1$$

$$CS = \frac{\cos\theta}{\sin\theta} - \sin\theta \tan\theta$$

$$CS = \frac{\cos\theta}{\cos\theta} - \sin\theta$$

$$CS = \frac{\cos\theta}{\cos\theta} - \sin\theta$$

$$CS = \frac{\cos\theta}{\cos\theta} - \cos\theta$$

$$C$$

Identities

Reciprocal Identities

Quotient Identities

$$csc \theta = \frac{1}{\sin \theta} \quad \sec \theta = \frac{1}{\cos \theta} \qquad \tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta = \frac{1}{\tan \theta} \qquad \text{Pythagorean Identities}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\tan^2 \theta + 1 = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\frac{\sin^2 \theta + \cos^2 \theta = 1}{\cos^2 \theta} \qquad \frac{\sin^2 \theta + \cos^2 \theta = 1}{\sin^2 \theta}$$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 338-339 #1 – 5, 8 – 13 p. 340 #2

Study for the Unit 5 Summative!

Today's Homework Practice includes: p. 310 #1 – 6

Work ahead? pp. 310-311 #8, 10 – 12 [14]
Worksheet a – j (online)

Note: Sometimes using substitution can help simplify a question. Ex. Simplify $(1 - \cos\theta)(1 + \cos\theta)$ Change to (1 - a)(1 + a)

$$-1 + (050 - \cos \phi - (050)) = |-0]^2$$