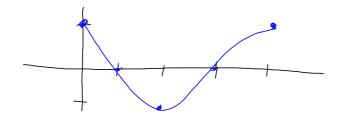
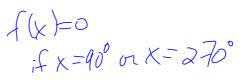
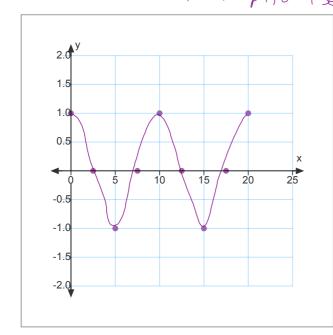
Today's Learning Goal(s):

By the end of the class, I will be able to:


a) determine how each transformation affects the sine and cosine curves.

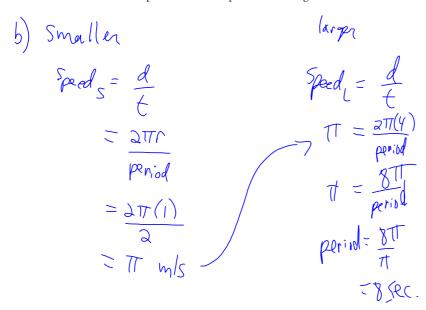

Show Level 4 Exemplars

Last day's work: pp. 363-364 #1 – 4, 8, 9 [15,16] pp. 370-372 #1 – 8, 13 [15]


Today's Homework Practice includes:

- p. 363 **2.** a) If $h(x) = \sin(5x) 1$, calculate $h(25^{\circ})$.
 - b) If $f(x) = \cos x$ and f(x) = 0, list the values of x where $0^{\circ} \le x \le 360^{\circ}$.

- **3.** A buoy rises and falls as it rides the waves. The equation $h(t) = \cos(36t)^{\circ}$ models the displacement of the buoy, h(t), in metres at t seconds.
 - a) Graph the displacement from 0 s to 20 s, in 2.5 s intervals.
 - b) Determine the period of the function from the graph. LO SEC
 - c) What is the displacement at 35 s? $\lambda(35) = (05)(3\lambda(35)) = -1$
 - d) At what time, to the nearest second, does the displacement first h(t) reach - 0.8 m? From Graph, t= 4 Sec



$$\frac{1}{2.5} = \frac{1}{2.5} = \frac{1}$$

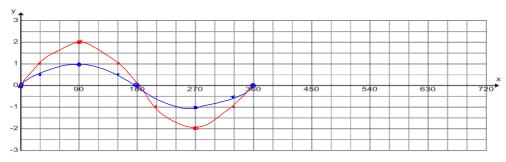
>4 Sec.

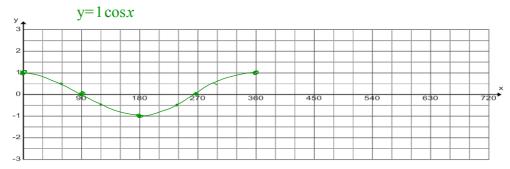
p. 372 Extending

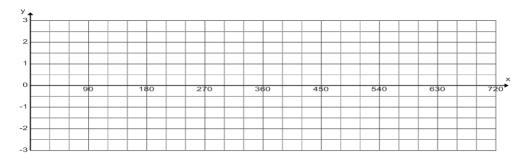
- **15.** A gear of radius 1 m turns counterclockwise and drives a larger gear of radius 4 m. Both gears have their axes along the horizontal.
 - a) In which direction is the larger gear turning? (Och wife
 - b) If the period of the smaller gear is 2 s, what is the period of the larger gear?
 - c) In a table, record convenient intervals for each gear, to show the vertical displacement, d, of the point where the two gears first touched. Begin the table at 0 s and end it at 24 s. Graph vertical displacement versus time.
 - d) What is the displacement of the point on the large wheel when the drive wheel first has a displacement of -0.5 m?
 - e) What is the displacement of the drive wheel when the large wheel first has a displacement of 2 m?
 - f) What is the displacement of the point on the large wheel at 5 min?

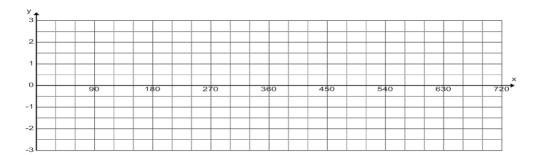
6.4 Exploring Transformations of Sinusoidal Functions

EXPLORE the Math: pp. 377-378 A-U

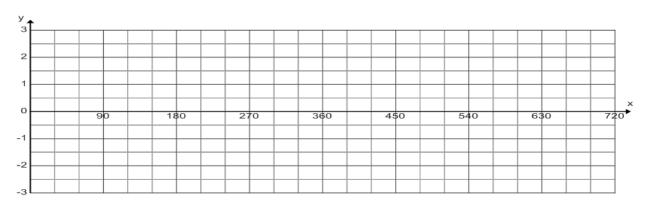

Date: May 15/19

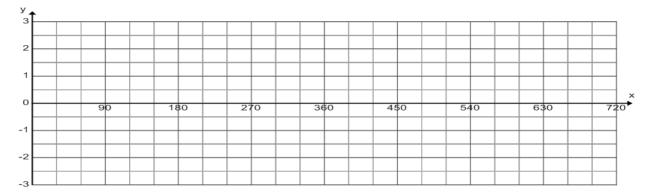

Part 1: The Graphs of $y = a \sin x$ and $y = a \cos x$.

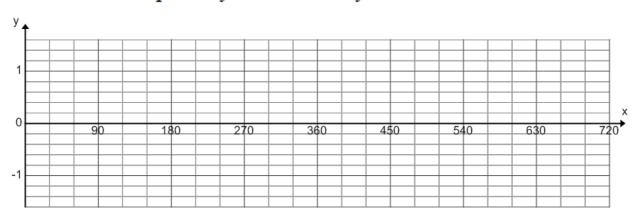

Start with the 5 Key Points from the parent function.

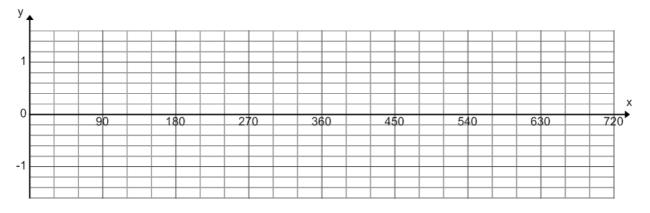

You may choose to add a few more for accuracy. Note: Only 1 complete cycle is required.

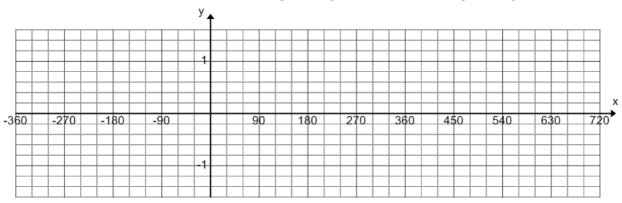
 $y=1\sin x$ $y=2\sin x$

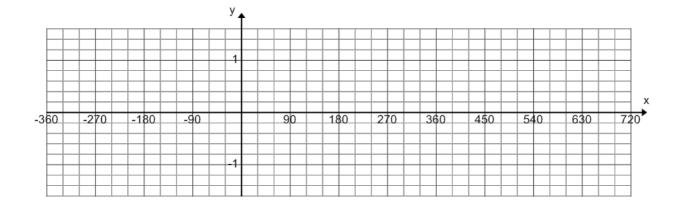







Part 2: The Graphs of $y = \sin x + c$ and $y = \cos x + c$.




Part 3: The Graphs of $y = \sin kx$ and $y = \cos kx$.

Part 4: The Graphs of $y = \sin(x-d)$ and $y = \cos(x-d)$.

Summary of $y = a \sin(k(x-d)) + c$ and $y = a \cos(k(x-d)) + c$ The transformations that have occurred to $y = \sin x$ and $y = \cos x$ are:

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 363-364 #1 – 4, 8, 9 [15,16] pp. 370-372 #1 – 8, 13 [15]

Today's Homework Practice includes:

pp. 377-378 A – U p. 379 #1 – 3 6.2 SineTracer.gsp