Date:		

Today's Learning Goal(s):

By the end of the class, I will be able to:

a) sketch sinusoidal functions using transformations.

Last day's work: pp. 383-385 #1 - 4 [12]

Using Transformations to Sketch Sinusoidal Functions Day2 6.5

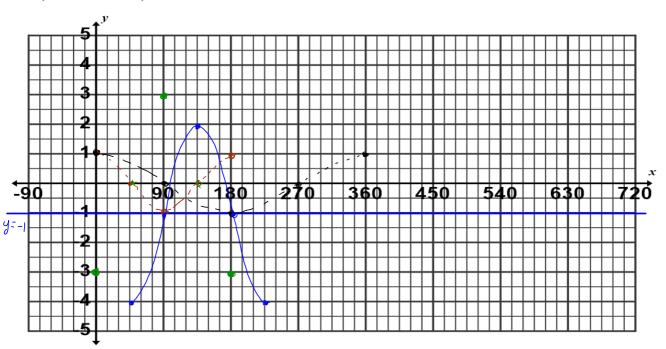
Ex. 1 Sketch (one cycle) for:

 $y = -3\cos(2x - 90^{\circ}) - 1$ $y = -3\cos(2x - 90^{\circ}) - 1$ $= -3\cos(2x - 90^{\circ}) - 1$ $= -3\cos(2x - 90^{\circ}) - 1$ $= -3\cos(2x - 90^{\circ}) - 1$ amplitude: $\frac{360^{\circ}}{\cancel{2}}$ phase shift: $\cancel{4}$ $= \frac{360^{\circ}}{\cancel{2}}$ equation of the axis: y = -1(vertical shift) $y = -3\cos(2x - 90^{\circ}) - 1$ $= -3\cos(2x - 90^{\circ}) -$

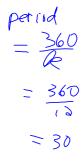
phase shift: 45° to the right

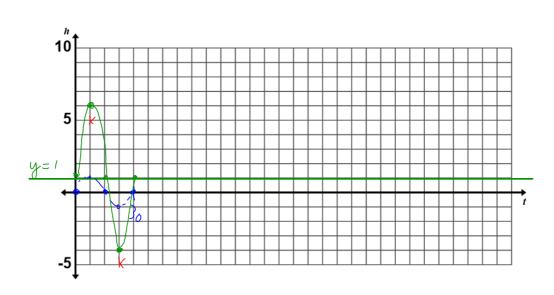
Date: May 17/19

(vertical shift)



Ex. 2 A water wheel turns. The height of a nail at the circumference of the wheel is given by $h = 5\sin(12t)^{\circ} + 1$. Graph the function.





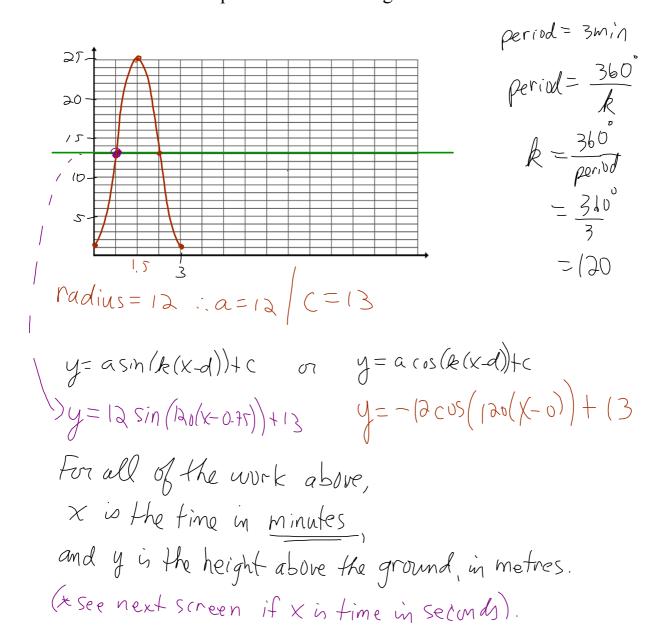
(see next screen for a thorough solution, with multiple answers)

Ex. 3 Ron gets on a ferris wheel.

The radius of the wheel is 12 m and he starts 1 moff the ground.

The wheel takes 3 minutes to go around.

Determine "an" equation for Ron's height in terms of the time.



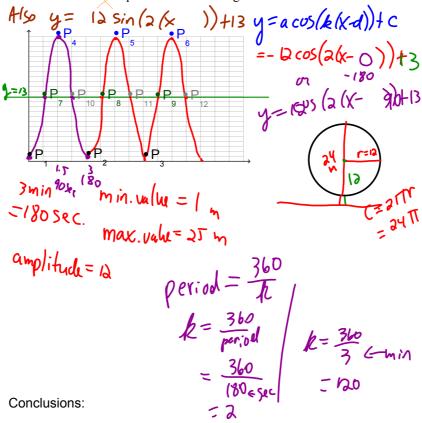
(if time)

Ex. 3 Ron gets on a ferris wheel.

The radius of the wheel is 12 m and he starts 1 moff the ground.

The wheel takes 3 minutes to go around.

Determine the equation for Ron's height in terms of the time.



The final equation depends on two main criteria:

- the point we chose as our "starting point"
- whether we choose a sine vs. cosine function

Note: the units we use may also change the result, as I will show: It was suggested in class to change the time to seconds, therefore, the period was 120 seconds, resulting in k = 2, and the scale is 45 sec. Had we left the time in minutes, then k = 120, and the scale is 0.75 min.

Choosing points P_1 - P_3 , uses a cosine curve with a = - 12.

(P₁)
$$y = -12 \cos (2 (x - 0)) + 13$$

(P₂) $y = -12 \cos (2 (x - 180)) + 13$
(P₃) $y = -12 \cos (2 (x - 360)) + 13$

Choosing points P_4 - P_6 , uses a cosine curve with a = + 12.

(P₄)
$$y = 12 \cos(2(x-90)) + 13$$

(P₅) $y = 12 \cos(2(x-270)) + 13$
(P₆) $y = 12 \cos(2(x-450)) + 13$

Choosing points P_7 - P_9 , uses a sine curve with a = + 12.

(P₇)
$$y = 12 \sin(2(x-45)) + 13$$

(P₈) $y = 12 \sin(2(x-225)) + 13$
(P₉) $y = 12 \sin(2(x-405)) + 13$

Choosing points P_{10} - P_{12} , uses a sine curve with a = - 12.

$$(P_{10}) \ y = -12 \sin(2(x-135)) + 13$$

 $(P_{11}) \ y = -12 \sin(2(x-315)) + 13$
 $(P_{12}) \ y = -12 \sin(2(x-495)) + 13$

Are there any Homework Questions you would like to see on the board?

Last day's work: pp. 383-385 #1 – 4 [12]

Today's Homework Practice includes:

pp. 383-385 #5 – 9 [13]