Are there any Homework Questions you would like to see on the board?

pp. 486-488 #1 – 3, 6, 7, 10, 1<u>4</u> **READ** pp. 489-490 (Mid-Chapter Review) pp. 491-492 # 1, 2, 4 – 14

Today's Learning Goal(s):

By the end of the class, I will be able to:

- a) Solve future-value problems involving regular payments or deposits.
- p. 487 7. How long does it take for an investment to triple in value at 10%/a interest compounded monthly?

- p. 488
 14. Tresha paid for household purchases with her credit card. The credit card company charges 18%/a compounded monthly. Tresha forgot to pay the monthly bill of \$465 for 3 months after it was due to be paid.
 - a) How much does Tresha owe at the end of each of the 3 months?
 - b) How much of each amount in part (a) is interest?

a)
$$A_{1} = 7$$
 $P = 465$
 $i = 218$
 $A_{1} = 471.98$
 $A_{2} = 465(1 + 0.18)$
 $A_{3} = 465(1 + 0.18)$
 $A_{4} = 465(1 + 0.18)$
 $A_{5} = 465(1 + 0.18)$
 $A_{7} = 471.98$
 $A_{7} = 471.98$

MCF 3M

8.5 Regular Annuities: Determining Future Value

$$A = \frac{R\left[\left(1+i\right)^n - 1\right]}{i}$$

Date: Jhne 4/19

Annuity – a series of equal deposits or payments made at regular intervals Simple Annuity – payments coincide with the compounding period Ordinary Annuity – payments are made at the end of each interval

* We will only be dealing with simple, ordinary annuities *

- Ex. 1: You make deposits of \$400 semi-annually into an account that pays interest at 6%/a compounded semi-annually.
 - a) How much money will be in the account after 3 years?
 - b) How much interest is earned over the 3-year term?

Method 1: Create a Timeline

after 3 years, the account will have $\frac{92587.36}{1}$

\$2587.36

we earned $\frac{4}{87}$ in interest.

- Ex. 1: You make deposits of \$400 semi-annually into an account that pays interest at 6%/a compounded semi-annually.
 - How much money will be in the account after 3 years?
 - How much interest is earned over the 3-year term?

Method 2: Use the Annuity Formula (by hand)

$$A = \frac{R\left[\left(1+i\right)^{n}-1\right]}{i}$$

$$= \frac{400\left(\left(1+0.03\right)^{6}-1\right)}{0.03}$$

$$= \frac{5}{2787.36}$$

A is the amount or future value R is the deposit or payment i is the interest rate per compounding period n is the total number of deposits

$$P = 400$$
 $C = 0.03$
 $N = 3 \times 3$

\$2587.36

Method 3: Use the TVM Calculator

TVM Calculator	
PV: \$	Rate: 6 %
PMT: \$-400	Periods: 6
FV: \$	Semiannual •
PV PMT	FV Rate Periods

- Ex. 2: You want to retire in 30 years with \$1 000 000 in savings. Your current investments are earning, on average, 11%/a compounded annually.
 - a) What annual deposit must you make to reach your savings goal?

Method 1: Use the Annuity Formula (by hand)

$$A = \frac{R\left[\left(1+i\right)^{n}-1\right]}{i}$$

$$A \text{ is the amount or future value}$$

$$R \text{ is the deposit or payment}$$

$$i \text{ is the interest rate per compounding period}$$

$$n \text{ is the total number of deposits}$$

$$A = \left[\left(1+0.11\right)^{3}-1\right]$$

$$A \text{ is the amount or future value}$$

$$R \text{ is the deposit or payment}$$

$$A = \left[\left(1+0.11\right)^{3}-1\right]$$

$$A \text{ is the amount or future value}$$

$$A \text{ is the deposit or payment}$$

$$A \text{ is the amount or future value}$$

$$A \text{ is the deposit or payment}$$

$$A = \left[\left(1+0.11\right)^{3} - \left(1+0.11\right)^{3} -$$

b) How much of the \$1 000 000 is interest earned?

Deposits =
$$5024.60 \times 30$$
 $I = 1000000 - 150738$
= 150738 = 1849262

of the \$1 000 000, 849262 is earned interest.

\$849 262

Method 2: Use the TVM Calculator

Revisit Today's Learning Goals

Today's Homework:

pp. 498-500 # 1, 3, 4ac, 5, 7, 9, 10

Continue completing your UNIT ASSIGNMENT!!